Difference between revisions of "009C Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 28: Line 28:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we notice that &nbsp;<math>\lim_{n\rightarrow \infty} \frac{\ln(n)}{\ln(n+1)}</math>&nbsp; has the form &nbsp;<math>\frac{\infty}{\infty}.</math>
 
|-
 
|-
|
+
|So, we can use L'Hopital's Rule. To begin, we write
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty}\frac{\ln(n)}{\ln(n+1)}=\lim_{x\rightarrow \infty} \frac{\ln(x)}{\ln(x+1)}.</math>
 
|}
 
|}
  
Line 38: Line 38:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, using L'Hopital's rule, we get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty}\frac{\ln(n)}{\ln(n+1)}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{x+1}}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{x+1}{x}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} 1+\frac{1}{x}}\\
 +
&&\\
 +
& = & \displaystyle{1.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 67: Line 75:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>1</math>
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)'''  
 
|&nbsp;&nbsp; '''(b)'''  
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:32, 4 March 2017

Test if the following sequences converge or diverge. Also find the limit of each convergent sequence.

(a)  

(b)  

Foundations:  
L'Hopital's Rule

        Suppose that   and   are both zero or both  

       If   is finite or  

       then


Solution:

(a)

Step 1:  
First, we notice that    has the form  
So, we can use L'Hopital's Rule. To begin, we write
       
Step 2:  
Now, using L'Hopital's rule, we get
       

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)

Return to Sample Exam