Difference between revisions of "009B Sample Final 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 59: Line 59:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we calculate &nbsp;<math>\frac{dy}{dx}.</math>
 +
|-
 +
|Since <math>y=1+9x^{\frac{3}{2}},</math> we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dy}{dx}=\frac{27\sqrt{x}}{2}.</math>
 +
|-
 +
|Then, the arc length &nbsp;<math>L</math>&nbsp; of the curve is given by
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_1^4 \sqrt{1+\bigg(\frac{27\sqrt{x}}{2}\bigg)^2}~dx.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Then, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_1^4 \sqrt{1+\frac{27^2x}{2^2}}~dx.</math>
 +
|-
 +
|Now, we use &nbsp;<math>u</math>-substitution.
 +
|-
 +
|Let &nbsp;<math>u=1+\frac{27^2x}{2^2}.</math>
 +
|-
 +
|Then, &nbsp; <math>du=\frac{27^2}{2^2}dx</math>&nbsp; and &nbsp;<math>dx=\frac{2^2}{27^2}du.</math>
 +
|-
 +
|Also, since this is a definite integral, we need to change the bounds of integration.
 +
|-
 +
|We have &nbsp; <math>u_1=1+\frac{27^2(1)}{2^2}=1+\frac{27^2}{2^2}</math>
 +
|-
 +
|and &nbsp; <math>u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math>
 +
|-
 +
|Hence, we now have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_{1+\frac{27^2}{2^2}}^{1+27^2} \frac{2^2}{27^2}u^{\frac{1}{2}}~du.</math>
 
|-
 
|-
 
|
 
|
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 
|-
 
|-
|
+
|Therefore, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{L} & = & \displaystyle{\frac{2^2}{27^2} \bigg(\frac{2}{3}u^{\frac{3}{2}}\bigg)\bigg|_{1+\frac{27^2}{2^2}}^{1+27^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2^3}{3^4} u^{\frac{3}{2}}\bigg|_{1+\frac{27^2}{2^2}}^{1+27^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2^3}{3^4} (1+27^2)^{\frac{3}{2}}-\frac{2^3}{3^4} \bigg(1+\frac{27^2}{2^2}\bigg)^{\frac{3}{2}}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 78: Line 116:
 
|'''(a)'''  
 
|'''(a)'''  
 
|-
 
|-
|'''(b)'''
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{2^3}{3^4} (1+27^2)^{\frac{3}{2}}-\frac{2^3}{3^4} \bigg(1+\frac{27^2}{2^2}\bigg)^{\frac{3}{2}}</math>
 
|}
 
|}
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:32, 4 March 2017

(a) Find the area of the surface obtained by rotating the arc of the curve

between and about the -axis.

(b) Find the length of the arc

between the points and

Foundations:  
1. The formula for the length    of a curve    where    is

       

2. The surface area    of a function    rotated about the  -axis is given by

         where


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
First, we calculate  
Since we have
       
Then, the arc length    of the curve is given by
       
Step 2:  
Then, we have
       
Now, we use  -substitution.
Let  
Then,     and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have  
and  
Hence, we now have
       
Step 3:  
Therefore, we have
       


Final Answer:  
(a)
   (b)   

Return to Sample Exam