Difference between revisions of "009B Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
|&nbsp; &nbsp; &nbsp; &nbsp;The correct substitution is &nbsp;<math style="vertical-align: -1px">x=4\sec^2\theta.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;The correct substitution is &nbsp;<math style="vertical-align: -1px">x=4\sec^2\theta.</math>
 
|-
 
|-
|'''2.''' We have the Pythagorean identity  
+
|'''2.''' Recall the Pythagorean identity  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\cos^2(x)=1-\sin^2(x).</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\cos^2(x)=1-\sin^2(x).</math>
Line 56: Line 56:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\int \frac{1}{x^2\sqrt{x^2-16}}~dx} & = & \displaystyle{\frac{1}{16}\cos\theta~d\theta}\\
+
\displaystyle{\int \frac{1}{x^2\sqrt{x^2-16}}~dx} & = & \displaystyle{\int \frac{1}{16}\cos\theta~d\theta}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{1}{16}\sin \theta +C}\\
 
& = & \displaystyle{\frac{1}{16}\sin \theta +C}\\
Line 89: Line 89:
 
|Then, we have
 
|Then, we have
 
|-
 
|-
|&nbsp;<math style="vertical-align: -5px">u_1=\sin(-\pi)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">u_2=\sin(\pi)=0.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">u_1=\sin(-\pi)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">u_2=\sin(\pi)=0.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
Line 148: Line 148:
 
|Since these are definite integrals, we need to change the bounds of integration.
 
|Since these are definite integrals, we need to change the bounds of integration.
 
|-
 
|-
|We have &nbsp;<math style="vertical-align: -4px">u_1=0+1=1</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">u_2=1+1=2.</math>
+
|We have  
 
|-
 
|-
|Also, &nbsp;<math style="vertical-align: -4px">t_1=0+5=5</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">t_2=1+5=6.</math>   
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">u_1=0+1=1</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">u_2=1+1=2.</math>
 +
|-
 +
|Also,  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">t_1=0+5=5</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">t_2=1+5=6.</math>   
 
|-
 
|-
 
|Therefore, we get
 
|Therefore, we get

Revision as of 12:57, 18 March 2017

Evaluate the following integrals:

(a)  

(b)  

(c)  

Foundations:  
1. For    what would be the correct trig substitution?
       The correct substitution is  
2. Recall the Pythagorean identity
       
3. Through partial fraction decomposition, we can write the fraction
       
       for some constants


Solution:

(a)

Step 1:  
We start by using trig substitution.
Let  
Then,  
So, the integral becomes
       
Step 2:  
Now, we integrate to get
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we use  -substitution.
Let    Then,  
Since this is a definite integral, we need to change the bounds of integration.
Then, we have
         and  
So, we have
       

(c)

Step 1:  
First, we write
       
Now, we use partial fraction decomposition. Wet set
       
If we multiply both sides of this equation by    we get
       
If we let    we get  
If we let    we get  
So, we have
       
Step 2:  
Now, we have

       

Now, we use  -substitution for both of these integrals.
Let    Then,  
Let    Then,  
Since these are definite integrals, we need to change the bounds of integration.
We have
         and  
Also,
         and  
Therefore, we get
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam