Difference between revisions of "009B Sample Final 2, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 72: | Line 72: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |First, we write |
| + | |- | ||
| + | | <math>\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx=\lim_{a\rightarrow 0} \int_a^1 \frac{3\ln x}{\sqrt{x}}~dx.</math> | ||
| + | |- | ||
| + | |Now, we use integration by parts. | ||
| + | |- | ||
| + | |Let <math style="vertical-align: -2px">u=3\ln x</math> and <math style="vertical-align: -13px">dv=\frac{1}{\sqrt{x}}dx.</math> | ||
| + | |- | ||
| + | |Then, <math style="vertical-align: -13px">du=\frac{3}{x}dx</math> and <math style="vertical-align: -13px">v=2\sqrt{x}.</math> | ||
| + | |- | ||
| + | |Using integration by parts, we get | ||
|- | |- | ||
| − | | | + | | <math>\begin{array}{rcl} |
| + | \displaystyle{\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx} & = & \displaystyle{\lim_{a\rightarrow 0} (3\ln x)(2\sqrt{x})\bigg|_a^1-\int_a^1 \frac{6}{\sqrt{x}}~dx}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{a\rightarrow 0} 6\sqrt{x}\ln(x)-12\sqrt{x}\bigg|_a^1.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 80: | Line 94: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, using L'Hopital's Rule, we get |
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx} & = & \displaystyle{\lim_{a\rightarrow 0} (6\sqrt{1}\ln(1)-12\sqrt{1})-(6\sqrt{a}\ln(a)-12\sqrt{a})}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{a\rightarrow 0} -12 -6\sqrt{a}\ln(a) +12\sqrt{a}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{a\rightarrow 0} -12 -6\sqrt{a}\ln(a)+0}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow 0} -12-6\sqrt{x}\ln(x)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{-12-\lim_{x\rightarrow 0} \frac{6\ln(x)}{\frac{1}{\sqrt{x}}}}\\ | ||
| + | &&\\ | ||
| + | & \overset{L'H}{=} & \displaystyle{-12-\lim_{x\rightarrow 0} \frac{\frac{6}{x}}{-\frac{1}{2x^{3/2}}}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{-12+\lim_{x\rightarrow 0} 12\sqrt{x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{-12.} | ||
| + | \end{array}</math> | ||
|- | |- | ||
| | | | ||
| Line 91: | Line 123: | ||
| '''(a)''' <math>\frac{1}{9}</math> | | '''(a)''' <math>\frac{1}{9}</math> | ||
|- | |- | ||
| − | |'''(b)''' | + | | '''(b)''' <math>-12</math> |
|} | |} | ||
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 13:28, 3 March 2017
Evaluate the following integrals or show that they are divergent:
(a)
(b)
| Foundations: |
|---|
| 1. How could you write so that you can integrate? |
|
You can write |
| 2. How could you write |
|
The problem is that is not continuous at |
|
So, you can write |
Solution:
(a)
| Step 1: |
|---|
| First, we write |
| Now, we use integration by parts. |
| Let and |
| Then, and |
| Using integration by parts, we get |
| Step 2: |
|---|
| Now, using L'Hopital's Rule, we get |
(b)
| Step 1: |
|---|
| First, we write |
| Now, we use integration by parts. |
| Let and |
| Then, and |
| Using integration by parts, we get |
| Step 2: |
|---|
| Now, using L'Hopital's Rule, we get |
| Final Answer: |
|---|
| (a) |
| (b) |