Difference between revisions of "009B Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 52: Line 52:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|The Fundamental Theorem of Calculus Part 2 says that
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\int_0^1 \frac{d}{dx}(e^{\arctan(x)})~dx=F(1)-F(0)</math>
 +
|-
 +
|where &nbsp;<math>F(x)</math>&nbsp; is any antiderivative of &nbsp;<math>\frac{d}{dx}(e^{\arctan(x)}).</math>
 +
|-
 +
|Thus, we can take
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>F(x)=e^{\arctan(x)}</math>
 
|-
 
|-
|
+
|since then <math>F'(x)=\frac{d}{dx}(e^{\arctan(x)}).</math>
 
|}
 
|}
  
Line 60: Line 68:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_0^1 \frac{d}{dx}(e^{\arctan(x)})~dx} & = & \displaystyle{F(1)-F(0)}\\
 +
&&\\
 +
& = & \displaystyle{e^{\arctan(1}-e^{\arctan(0)}}\\
 +
&&\\
 +
& = & \displaystyle{e^{\frac{\pi}{4}}-e^0}\\
 +
&&\\
 +
& = & \displaystyle{e^{\frac{\pi}{4}}-1.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 70: Line 86:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|Using the Fundamental Theorem of Calculus Part 1 and the Chain Rule, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt=\sin\bigg(\frac{1}{x}\bigg)\frac{d}{dx}\bigg(\frac{1}{x}\bigg).</math>
 
|-
 
|-
 
|
 
|
Line 78: Line 96:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Hence, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt=\sin\bigg(\frac{1}{x}\bigg)\bigg(-\frac{1}{x^2}\bigg).</math>
 
|-
 
|-
 
|
 
|
Line 88: Line 108:
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; See above  
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; See above  
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>e^{\frac{\pi}{4}}-1</math>
 
|-
 
|-
|'''(c)'''  
+
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>\sin\bigg(\frac{1}{x}\bigg)\bigg(-\frac{1}{x^2}\bigg)</math>
 
|}
 
|}
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:32, 4 March 2017

(a) State both parts of the Fundamental Theorem of Calculus.

(b) Evaluate the integral

(c) Compute

Foundations:  

Solution:

(a)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
       Let    be continuous on    and let  
       Then,    is a differentiable function on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,b)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'(x)=f(x).}
Step 2:  
The Fundamental Theorem of Calculus, Part 2
       Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   be continuous on  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]}   and let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F}   be any antiderivative of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f.}
       Then,  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b f(x)~dx=F(b)-F(a).}

(b)

Step 1:  
The Fundamental Theorem of Calculus Part 2 says that
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^1 \frac{d}{dx}(e^{\arctan(x)})~dx=F(1)-F(0)}
where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)}   is any antiderivative of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(e^{\arctan(x)}).}
Thus, we can take
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F(x)=e^{\arctan(x)}}
since then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F'(x)=\frac{d}{dx}(e^{\arctan(x)}).}
Step 2:  
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^1 \frac{d}{dx}(e^{\arctan(x)})~dx} & = & \displaystyle{F(1)-F(0)}\\ &&\\ & = & \displaystyle{e^{\arctan(1}-e^{\arctan(0)}}\\ &&\\ & = & \displaystyle{e^{\frac{\pi}{4}}-e^0}\\ &&\\ & = & \displaystyle{e^{\frac{\pi}{4}}-1.} \end{array}}

(c)

Step 1:  
Using the Fundamental Theorem of Calculus Part 1 and the Chain Rule, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt=\sin\bigg(\frac{1}{x}\bigg)\frac{d}{dx}\bigg(\frac{1}{x}\bigg).}
Step 2:  
Hence, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\int_1^{\frac{1}{x}} \sin t~dt=\sin\bigg(\frac{1}{x}\bigg)\bigg(-\frac{1}{x^2}\bigg).}
Final Answer:  
   (a)    See above
   (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{\frac{\pi}{4}}-1}
   (c)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin\bigg(\frac{1}{x}\bigg)\bigg(-\frac{1}{x^2}\bigg)}

Return to Sample Exam