Difference between revisions of "009B Sample Final 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 27: Line 27:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We start by using trig substitution.
 +
|-
 +
|Let &nbsp;<math>x=4\sec \theta.</math>
 
|-
 
|-
|
+
|Then, &nbsp;<math>dx=4\sec \theta \tan \theta d\theta.</math>
 
|-
 
|-
|
+
|So, the integral becomes
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{1}{x^2\sqrt{x^2-16}}~dx} & = & \displaystyle{\int \frac{4\sec \theta \tan \theta}{16\sec^2\theta \sqrt{16\sec^2 \theta -16}}~d\theta}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{4\sec \theta \tan \theta}{16\sec^2\theta (4\tan \theta)} ~d\theta}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{1}{16\sec \theta} ~d\theta.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 39: Line 47:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we integrate to get
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{\int \frac{1}{x^2\sqrt{x^2-16}}~dx} & = & \displaystyle{\frac{1}{16}\cos\theta~d\theta}\\
|
+
&&\\
 +
& = & \displaystyle{\frac{1}{16}\sin \theta +C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{16}\bigg(\frac{\sqrt{x^2-16}}{x}\bigg)+C.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 53: Line 63:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, we write
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_{-\pi}^\pi \sin^3x\cos^3x~dx} & = & \displaystyle{\int_{-\pi}^{\pi} \sin^3x \cos^2x \cos x~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int_{-\pi}^{\pi} \sin^3x (1-\sin^2x)\cos x~dx.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 61: Line 75:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we use &nbsp;<math>u</math>-substitution.
 +
|-
 +
|Let &nbsp;<math>u=\sin x.</math>&nbsp; Then, &nbsp;<math>du=\cos x dx.</math>
 +
|-
 +
|Since this is a definite integral, we need to change the bounds of integration.
 +
|-
 +
|Then, we have
 +
|-
 +
|&nbsp;<math>u_1=\sin(-\pi)=0</math>&nbsp; and &nbsp;<math>u_2=\sin(\pi)=0.</math>
 +
|-
 +
|So, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_{-\pi}^\pi \sin^3x\cos^3x~dx} & = & \displaystyle{\int_0^0 u^3(1-u^2)~du}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 71: Line 99:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, we write
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_0^1 \frac{x-3}{x^2+6x+5}~dx=\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx.</math>
 +
|-
 +
|Now, we use partial fraction decomposition. Wet set
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{x-3}{(x+1)(x+5)}=\frac{A}{x+1}+\frac{B}{x+5}.</math>
 +
|-
 +
|If we multiply both sides of this equation by &nbsp;<math>(x+1)(x+5),</math> we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>x-3=A(x+5)+B(x+1).</math>
 +
|-
 +
|If we  let &nbsp;<math>x=-1,</math> we get <math>A=-1.</math>
 +
|-
 +
|If we  let &nbsp;<math>x=-5,</math> we get <math>B=2.</math>
 +
|-
 +
|So, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{x-3}{(x+1)(x+5)}=\frac{-1}{x+1}+\frac{2}{x+5}.</math>
 
|-
 
|-
 
|
 
|
Line 78: Line 124:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx} & = & \displaystyle{\int_0^1 \frac{-1}{x+1}+\frac{2}{x+5}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int_0^1 \frac{-1}{x+1}~dx+\int_0^1 \frac{2}{x+5}~dx.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|Now, we use &nbsp;<math>u</math>-substitution for both of these integrals.
 +
|-
 +
|Let &nbsp;<math>u=x+1.</math>&nbsp; Then, &nbsp;<math>du=dx.</math>
 +
|-
 +
|Let &nbsp;<math>t=x+5.</math>&nbsp; Then, &nbsp;<math>dt=dx.</math>
 +
|-
 +
|Since these are definite integrals, we need to change the bounds of integration.
 +
|-
 +
|We have &nbsp;<math>u_1=0+1=1</math>&nbsp; and &nbsp;<math>u_2=1+1=2.</math>
 +
|-
 +
|Also, &nbsp;<math>t_1=0+5=5</math>&nbsp; and &nbsp;<math>u_2=1+5=6.</math> 
 +
|-
 +
|Therefore, we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_0^1 \frac{x-3}{(x+1)(x+5)}~dx} & = & \displaystyle{\int_1^2 \frac{-1}{u}~du+\int_5^6 \frac{2}{t}~dt}\\
 +
&&\\
 +
& = & \displaystyle{-\ln|u|\bigg|_1^2+2\ln|t|\bigg|_5^6}\\
 +
&&\\
 +
& = & \displaystyle{-\ln(2)+2\ln(6)-2\ln(5).}
 +
\end{array}</math>
 
|}
 
|}
  
Line 88: Line 161:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>\frac{1}{16}\bigg(\frac{\sqrt{x^2-16}}{x}\bigg)+C</math>
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>0</math>
 
|-
 
|-
|'''(c)'''  
+
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>-\ln(2)+2\ln(6)-2\ln(5)</math>
 
|}
 
|}
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:08, 4 March 2017

Evaluate the following integrals:

(a)  

(b)  

(c)  

Foundations:  


Solution:

(a)

Step 1:  
We start by using trig substitution.
Let  
Then,  
So, the integral becomes
       
Step 2:  
Now, we integrate to get
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we use  -substitution.
Let    Then,  
Since this is a definite integral, we need to change the bounds of integration.
Then, we have
   and  
So, we have
       

(c)

Step 1:  
First, we write
       
Now, we use partial fraction decomposition. Wet set
       
If we multiply both sides of this equation by   we get
       
If we let   we get
If we let   we get
So, we have
       
Step 2:  
Now, we have

       

Now, we use  -substitution for both of these integrals.
Let    Then,  
Let    Then,  
Since these are definite integrals, we need to change the bounds of integration.
We have    and  
Also,    and  
Therefore, we get
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam