Difference between revisions of "009B Sample Final 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''1.''' You can find the intersection points of two functions, say &nbsp; <math style="vertical-align: -5px">f(x),g(x),</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; by setting &nbsp;<math style="vertical-align: -5px">f(x)=g(x)</math>&nbsp; and solving for &nbsp;<math style="vertical-align: 0px">x.</math>
 
|-
 
|-
|
+
|'''2.''' The volume of a solid obtained by rotating an area around the &nbsp;<math style="vertical-align: -4px">x</math>-axis using the washer method is given by 
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int \pi(r_{\text{outer}}^2-r_{\text{inner}}^2)~dx,</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">r_{\text{inner}}</math>&nbsp; is the inner radius of the washer and &nbsp;<math style="vertical-align: 0px">r_{\text{outer}}</math>&nbsp; is the outer radius of the washer.
 
|}
 
|}
  
Line 19: Line 21:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, we need to find the intersection points of &nbsp;<math>y=x</math>&nbsp; and &nbsp;<math>y=x^2.</math>
 +
|-
 +
|To do this, we need to solve &nbsp;<math>x=x^2.</math>
 +
|-
 +
|Moving all the terms on one side of the equation, we get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{0} & = & \displaystyle{x^2-x}\\
 +
&&\\
 +
& = & \displaystyle{x(x-1).}
 +
\end{array}</math>
 
|-
 
|-
|
+
|Hence, these two curves intersect at &nbsp;<math>x=0</math>&nbsp; and &nbsp;<math>x=1.</math>
 
|-
 
|-
|
+
|So, we are interested in the region between &nbsp;<math>x=0</math>&nbsp; and &nbsp;<math>x=1.</math>
 
|}
 
|}
  
Line 31: Line 41:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|We use the washer method to calculate this volume.
 +
|-
 +
|The outer radius is &nbsp;<math>r_{\text{outer}}=2-x^2</math>&nbsp; and
 +
|-
 +
|the inner radius is &nbsp;<math>r_{\text{inner}}=2-x.</math>&nbsp;
 
|-
 
|-
|  
+
|Therefore, the volume of the solid is
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{V} & = & \displaystyle{\int_0^1 \pi(r_{\text{outer}}^2-r_{\text{inner}}^2)~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int_0^1 \pi((2-x^2)^2-(2-x)^2)~dx.}
 +
\end{array}</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, we integrate to get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{V} & = & \displaystyle{\pi \int_0^1 ((4-4x^2+x^4)-(4-4x+x^2))~dx}\\
 +
&&\\
 +
& = & \displaystyle{\pi \int_0^1 (4x-5x^2+x^4)~dx}\\
 +
&&\\
 +
& = & \displaystyle{\pi\bigg(2x^2-\frac{5x^3}{3}+\frac{x^5}{5}\bigg)\bigg|_0^1}\\
 +
&&\\
 +
& = & \displaystyle{\pi\bigg(2-\frac{5}{3}+\frac{1}{5}\bigg)-0}\\
 +
&&\\
 +
& = & \displaystyle{\frac{8\pi}{15}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 44: Line 78:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{8\pi}{15}</math>
 
|}
 
|}
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:13, 4 March 2017

Find the volume of the solid obtained by rotating the region bounded by the curves    and    about the line  

Foundations:  
1. You can find the intersection points of two functions, say  

        by setting    and solving for  

2. The volume of a solid obtained by rotating an area around the  -axis using the washer method is given by

          where    is the inner radius of the washer and    is the outer radius of the washer.


Solution:

Step 1:  
First, we need to find the intersection points of    and  
To do this, we need to solve  
Moving all the terms on one side of the equation, we get
       
Hence, these two curves intersect at    and  
So, we are interested in the region between    and  
Step 2:  
We use the washer method to calculate this volume.
The outer radius is    and
the inner radius is   
Therefore, the volume of the solid is
       
Step 3:  
Now, we integrate to get
       


Final Answer:  
       

Return to Sample Exam