Difference between revisions of "009B Sample Final 3, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 85: | Line 85: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We begin by using <math>u</math>-substitution. | + | |We begin by using <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
− | |Let <math>u=\sqrt{x+1}.</math> | + | |Let <math style="vertical-align: -3px">u=\sqrt{x+1}.</math> |
|- | |- | ||
− | |Then, <math>u^2=x+1</math> and <math>x=u^2-1.</math> | + | |Then, <math style="vertical-align: -2px">u^2=x+1</math> and <math style="vertical-align: -1px">x=u^2-1.</math> |
|- | |- | ||
|Also, we have | |Also, we have | ||
Line 101: | Line 101: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |Hence, <math>dx=2udu.</math> | + | |Hence, |
+ | |- | ||
+ | | <math>dx=2udu.</math> | ||
|- | |- | ||
|Using all this information, we get | |Using all this information, we get | ||
Line 131: | Line 133: | ||
|Now, for the remaining integral, we use partial fraction decomposition. | |Now, for the remaining integral, we use partial fraction decomposition. | ||
|- | |- | ||
− | |Let | + | |Let |
|- | |- | ||
− | |Then, we multiply this equation by <math>(x-1)(x+1)</math> to get | + | | <math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math> |
+ | |- | ||
+ | |Then, we multiply this equation by <math style="vertical-align: -5px">(x-1)(x+1)</math> to get | ||
|- | |- | ||
| <math>2=A(x-1)+B(x+1).</math> | | <math>2=A(x-1)+B(x+1).</math> | ||
|- | |- | ||
− | |If we let <math>x=1,</math> we get <math>B=1.</math> | + | |If we let <math style="vertical-align: -4px">x=1,</math> we get <math style="vertical-align: -2px">B=1.</math> |
+ | |- | ||
+ | |If we let <math style="vertical-align: -4px">x=-1,</math> we get <math style="vertical-align: -2px">A=-1.</math> | ||
|- | |- | ||
− | | | + | |Thus, we have |
|- | |- | ||
− | | | + | | <math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math> |
|- | |- | ||
|Using this equation, we have | |Using this equation, we have | ||
Line 155: | Line 161: | ||
!Step 4: | !Step 4: | ||
|- | |- | ||
− | |To complete this integral, we need to use <math>u</math>-substitution. | + | |To complete this integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
− | |For the first integral, let <math>t=u+1.</math> Then, <math>dt=du.</math> | + | |For the first integral, let <math style="vertical-align: -3px">t=u+1.</math> Then, <math style="vertical-align: -1px">dt=du.</math> |
|- | |- | ||
− | |For the second integral, let <math>v=u-1.</math> Then, <math>dv=du.</math> | + | |For the second integral, let <math style="vertical-align: -2px">v=u-1.</math> Then, <math style="vertical-align: -1px">dv=du.</math> |
|- | |- | ||
|Finally, we integrate to get | |Finally, we integrate to get |
Revision as of 10:14, 3 March 2017
Find the following integrals
(a)
(b)
Foundations: |
---|
Through partial fraction decomposition, we can write the fraction |
for some constants |
Solution:
(a)
Step 1: |
---|
First, we factor the denominator to get |
We use the method of partial fraction decomposition. |
We let |
If we multiply both sides of this equation by we get |
Step 2: |
---|
Now, if we let we get |
If we let we get |
Therefore, |
Step 3: |
---|
Now, we have |
Now, we use -substitution. |
Let |
Then, and |
Hence, we have |
(b)
Step 1: |
---|
We begin by using -substitution. |
Let |
Then, and |
Also, we have |
Hence, |
Using all this information, we get |
Step 2: |
---|
Now, we have |
Step 3: |
---|
Now, for the remaining integral, we use partial fraction decomposition. |
Let |
Then, we multiply this equation by to get |
If we let we get |
If we let we get |
Thus, we have |
Using this equation, we have |
Step 4: |
---|
To complete this integral, we need to use -substitution. |
For the first integral, let Then, |
For the second integral, let Then, |
Finally, we integrate to get |
Final Answer: |
---|
(a) |
(b) |