Difference between revisions of "009B Sample Final 3, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 12: | Line 12: | ||
| <math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math> | | <math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math> | ||
|- | |- | ||
− | | | + | |for some constants <math style="vertical-align: -4px">A,B.</math> |
|} | |} | ||
Line 33: | Line 33: | ||
| <math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math> | | <math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math> | ||
|- | |- | ||
− | |If we multiply both sides of this equation by <math>x(2x-1),</math> we get | + | |If we multiply both sides of this equation by <math>x(2x-1),</math> we get |
|- | |- | ||
| <math>3x-1=A(2x-1)+Bx.</math> | | <math>3x-1=A(2x-1)+Bx.</math> | ||
Line 41: | Line 41: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, if we let <math>x=0,</math> we get <math>A=1.</math> | + | |Now, if we let <math>x=0,</math> we get <math>A=1.</math> |
|- | |- | ||
− | |If we let <math>x=\frac{1}{2},</math> we get <math>B=1.</math> | + | |If we let <math>x=\frac{1}{2},</math> we get <math>B=1.</math> |
|- | |- | ||
|Therefore, | |Therefore, | ||
Line 63: | Line 63: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |Now, we use <math>u</math>-substitution. | + | |Now, we use <math>u</math>-substitution. |
|- | |- | ||
− | |Let <math>u=2x-1.</math> | + | |Let <math>u=2x-1.</math> |
|- | |- | ||
− | |Then, <math>du=2dx</math> and <math>\frac{du}{2}=dx.</math> | + | |Then, <math>du=2dx</math> and <math>\frac{du}{2}=dx.</math> |
|- | |- | ||
|Hence, we have | |Hence, we have | ||
Line 85: | Line 85: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We begin by using <math>u</math>-substitution. | + | |We begin by using <math>u</math>-substitution. |
|- | |- | ||
− | |Let <math>u=\sqrt{x+1}.</math> | + | |Let <math>u=\sqrt{x+1}.</math> |
|- | |- | ||
− | |Then, <math>u^2=x+1</math> and <math>x=u^2-1.</math> | + | |Then, <math>u^2=x+1</math> and <math>x=u^2-1.</math> |
|- | |- | ||
|Also, we have | |Also, we have | ||
Line 101: | Line 101: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |Hence, <math>dx=2udu</math> | + | |Hence, <math>dx=2udu.</math> |
|- | |- | ||
|Using all this information, we get | |Using all this information, we get | ||
|- | |- | ||
− | |<math>\int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.</math> | + | | <math>\int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.</math> |
|} | |} | ||
Line 131: | Line 131: | ||
|Now, for the remaining integral, we use partial fraction decomposition. | |Now, for the remaining integral, we use partial fraction decomposition. | ||
|- | |- | ||
− | |Let <math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math> | + | |Let <math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math> |
|- | |- | ||
− | |Then, we multiply this equation by <math>(x-1)(x+1)</math> to get | + | |Then, we multiply this equation by <math>(x-1)(x+1)</math> to get |
|- | |- | ||
− | |<math>2=A(x-1)+B(x+1).</math> | + | | <math>2=A(x-1)+B(x+1).</math> |
|- | |- | ||
− | |If we let <math>x=1,</math> we get <math>B=1.</math> | + | |If we let <math>x=1,</math> we get <math>B=1.</math> |
|- | |- | ||
− | |If we let <math>x=-1,</math> we get <math>A=-1.</math> | + | |If we let <math>x=-1,</math> we get <math>A=-1.</math> |
|- | |- | ||
− | |Thus, we have <math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math> | + | |Thus, we have <math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math> |
|- | |- | ||
|Using this equation, we have | |Using this equation, we have | ||
Line 155: | Line 155: | ||
!Step 4: | !Step 4: | ||
|- | |- | ||
− | |To complete this integral, we need to use <math>u</math>-substitution. | + | |To complete this integral, we need to use <math>u</math>-substitution. |
|- | |- | ||
− | |For the first integral, let <math>t=u+1.</math> Then, <math>dt=du.</math> | + | |For the first integral, let <math>t=u+1.</math> Then, <math>dt=du.</math> |
|- | |- | ||
− | |For the second integral, let <math>v=u-1.</math> Then, <math>dv=du.</math> | + | |For the second integral, let <math>v=u-1.</math> Then, <math>dv=du.</math> |
|- | |- | ||
|Finally, we integrate to get | |Finally, we integrate to get |
Revision as of 10:00, 3 March 2017
Find the following integrals
(a)
(b)
Foundations: |
---|
Through partial fraction decomposition, we can write the fraction |
for some constants |
Solution:
(a)
Step 1: |
---|
First, we factor the denominator to get |
We use the method of partial fraction decomposition. |
We let |
If we multiply both sides of this equation by we get |
Step 2: |
---|
Now, if we let we get |
If we let we get |
Therefore, |
Step 3: |
---|
Therefore, we have |
Now, we use -substitution. |
Let |
Then, and |
Hence, we have |
(b)
Step 1: |
---|
We begin by using -substitution. |
Let |
Then, and |
Also, we have |
Hence, |
Using all this information, we get |
Step 2: |
---|
Now, we have |
Step 3: |
---|
Now, for the remaining integral, we use partial fraction decomposition. |
Let |
Then, we multiply this equation by to get |
If we let we get |
If we let we get |
Thus, we have |
Using this equation, we have |
Step 4: |
---|
To complete this integral, we need to use -substitution. |
For the first integral, let Then, |
For the second integral, let Then, |
Finally, we integrate to get |
Final Answer: |
---|
(a) |
(b) |