Difference between revisions of "009B Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;for some constants <math style="vertical-align: -4px">A,B.</math>
+
|for some constants <math style="vertical-align: -4px">A,B.</math>
 
|}
 
|}
  
Line 33: Line 33:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math>
 
|-
 
|-
|If we multiply both sides of this equation by <math>x(2x-1),</math> we get  
+
|If we multiply both sides of this equation by &nbsp;<math>x(2x-1),</math>&nbsp; we get  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>3x-1=A(2x-1)+Bx.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>3x-1=A(2x-1)+Bx.</math>
Line 41: Line 41:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, if we let <math>x=0,</math> we get <math>A=1.</math>
+
|Now, if we let &nbsp;<math>x=0,</math>&nbsp; we get &nbsp;<math>A=1.</math>
 
|-
 
|-
|If we let <math>x=\frac{1}{2},</math> we get <math>B=1.</math>  
+
|If we let &nbsp;<math>x=\frac{1}{2},</math>&nbsp; we get &nbsp;<math>B=1.</math>  
 
|-
 
|-
 
|Therefore,  
 
|Therefore,  
Line 63: Line 63:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Now, we use <math>u</math>-substitution.  
+
|Now, we use &nbsp;<math>u</math>-substitution.  
 
|-
 
|-
|Let <math>u=2x-1.</math>
+
|Let &nbsp;<math>u=2x-1.</math>
 
|-
 
|-
|Then, <math>du=2dx</math> and <math>\frac{du}{2}=dx.</math>
+
|Then, &nbsp;<math>du=2dx</math>&nbsp; and &nbsp;<math>\frac{du}{2}=dx.</math>
 
|-
 
|-
 
|Hence, we have
 
|Hence, we have
Line 85: Line 85:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We begin by using <math>u</math>-substitution.  
+
|We begin by using &nbsp;<math>u</math>-substitution.  
 
|-
 
|-
|Let <math>u=\sqrt{x+1}.</math>
+
|Let &nbsp;<math>u=\sqrt{x+1}.</math>
 
|-
 
|-
|Then, <math>u^2=x+1</math> and <math>x=u^2-1.</math>
+
|Then, &nbsp;<math>u^2=x+1</math>&nbsp; and &nbsp;<math>x=u^2-1.</math>
 
|-
 
|-
 
|Also, we have  
 
|Also, we have  
Line 101: Line 101:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Hence, <math>dx=2udu</math>.
+
|Hence, &nbsp;<math>dx=2udu.</math>
 
|-
 
|-
 
|Using all this information, we get
 
|Using all this information, we get
 
|-
 
|-
|<math>\int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.</math>
 
|}
 
|}
  
Line 131: Line 131:
 
|Now, for the remaining integral, we use partial fraction decomposition.  
 
|Now, for the remaining integral, we use partial fraction decomposition.  
 
|-
 
|-
|Let <math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math>
+
|Let &nbsp;<math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math>
 
|-
 
|-
|Then, we multiply this equation by <math>(x-1)(x+1)</math> to get
+
|Then, we multiply this equation by &nbsp;<math>(x-1)(x+1)</math>&nbsp; to get
 
|-
 
|-
|<math>2=A(x-1)+B(x+1).</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>2=A(x-1)+B(x+1).</math>
 
|-
 
|-
|If we let <math>x=1,</math> we get <math>B=1.</math>
+
|If we let &nbsp;<math>x=1,</math>&nbsp; we get &nbsp;<math>B=1.</math>
 
|-
 
|-
|If we let <math>x=-1,</math> we get <math>A=-1.</math>
+
|If we let &nbsp;<math>x=-1,</math>&nbsp; we get &nbsp;<math>A=-1.</math>
 
|-
 
|-
|Thus, we have <math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math>
+
|Thus, we have &nbsp;<math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math>
 
|-
 
|-
 
|Using this equation, we have
 
|Using this equation, we have
Line 155: Line 155:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|To complete this integral, we need to use <math>u</math>-substitution.
+
|To complete this integral, we need to use &nbsp;<math>u</math>-substitution.
 
|-
 
|-
|For the first integral, let <math>t=u+1.</math> Then, <math>dt=du.</math>
+
|For the first integral, let &nbsp;<math>t=u+1.</math>&nbsp; Then, &nbsp;<math>dt=du.</math>
 
|-
 
|-
|For the second integral, let <math>v=u-1.</math> Then, <math>dv=du.</math>
+
|For the second integral, let &nbsp;<math>v=u-1.</math>&nbsp; Then, &nbsp;<math>dv=du.</math>
 
|-
 
|-
 
|Finally, we integrate to get
 
|Finally, we integrate to get

Revision as of 10:00, 3 March 2017

Find the following integrals

(a)  

(b)  

Foundations:  
Through partial fraction decomposition, we can write the fraction
       
for some constants


Solution:

(a)

Step 1:  
First, we factor the denominator to get
       
We use the method of partial fraction decomposition.
We let
       
If we multiply both sides of this equation by    we get
       
Step 2:  
Now, if we let    we get  
If we let    we get  
Therefore,
       
Step 3:  
Therefore, we have
       
Now, we use  -substitution.
Let  
Then,    and  
Hence, we have
       

(b)

Step 1:  
We begin by using  -substitution.
Let  
Then,    and  
Also, we have
       
Hence,  
Using all this information, we get
       
Step 2:  
Now, we have
       
Step 3:  
Now, for the remaining integral, we use partial fraction decomposition.
Let  
Then, we multiply this equation by    to get
       
If we let    we get  
If we let    we get  
Thus, we have  
Using this equation, we have
       
Step 4:  
To complete this integral, we need to use  -substitution.
For the first integral, let    Then,  
For the second integral, let    Then,  
Finally, we integrate to get
       


Final Answer:  
   (a)   
   (b)   

Return to Sample Exam