Difference between revisions of "009B Sample Final 3, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 105: | Line 105: | ||
|Using all this information, we get | |Using all this information, we get | ||
|- | |- | ||
− | | | + | |<math>\int \frac{\sqrt{x+1}}{x}~dx=\int \frac{2u^2}{u^2-1}~du.</math> |
|} | |} | ||
Line 111: | Line 111: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we have |
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{\int \frac{2u^2-2+2}{u^2-1}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int \frac{2(u^2-1)}{u^2-1}~du+\int \frac{2}{u^2-1}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int 2~du+\int \frac{2}{u^2-1}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2u+\int \frac{2}{u^2-1}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2\sqrt{x+1}+\int \frac{2}{(u-1)(u+1)}~du.} | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 3: | ||
+ | |- | ||
+ | |Now, for the remaining integral, we use partial fraction decomposition. | ||
+ | |- | ||
+ | |Let <math>\frac{2}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}.</math> | ||
+ | |- | ||
+ | |Then, we multiply this equation by <math>(x-1)(x+1)</math> to get | ||
+ | |- | ||
+ | |<math>2=A(x-1)+B(x+1).</math> | ||
+ | |- | ||
+ | |If we let <math>x=1,</math> we get <math>B=1.</math> | ||
+ | |- | ||
+ | |If we let <math>x=-1,</math> we get <math>A=-1.</math> | ||
+ | |- | ||
+ | |Thus, we have <math>\frac{2}{(x-1)(x+1)}=\frac{-1}{x+1}+\frac{1}{x-1}.</math> | ||
+ | |- | ||
+ | |Using this equation, we have | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{(u+1)}+\frac{1}{u-1}~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{(u+1)}~du+\int \frac{1}{u-1}~du.}\\ | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 4: | ||
+ | |- | ||
+ | |To complete this integral, we need to use <math>u</math>-substitution. | ||
+ | |- | ||
+ | |For the first integral, let <math>t=u+1.</math> Then, <math>dt=du.</math> | ||
+ | |- | ||
+ | |For the second integral, let <math>v=u-1.</math> Then, <math>dv=du.</math> | ||
+ | |- | ||
+ | |Finally, we integrate to get | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \frac{\sqrt{x+1}}{x}~dx} & = & \displaystyle{2\sqrt{x+1}+\int \frac{-1}{t}~dt+\int \frac{1}{v}~dv}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2\sqrt{x+1}+\ln|t|+\ln|v|+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2\sqrt{x+1}+\ln|u+1|+\ln|u-1|+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2\sqrt{x+1}+\ln|\sqrt{x+1}+1|+\ln|\sqrt{x+1}-1|+C.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 122: | Line 180: | ||
| '''(a)''' <math>\ln |x|+\frac{1}{2}\ln |2x-1|+C</math> | | '''(a)''' <math>\ln |x|+\frac{1}{2}\ln |2x-1|+C</math> | ||
|- | |- | ||
− | |'''(b)''' | + | | '''(b)''' <math>2\sqrt{x+1}+\ln|\sqrt{x+1}+1|+\ln|\sqrt{x+1}-1|+C</math> |
|} | |} | ||
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 09:56, 3 March 2017
Find the following integrals
(a)
(b)
Foundations: |
---|
Through partial fraction decomposition, we can write the fraction |
for some constants |
Solution:
(a)
Step 1: |
---|
First, we factor the denominator to get |
We use the method of partial fraction decomposition. |
We let |
If we multiply both sides of this equation by we get |
Step 2: |
---|
Now, if we let we get |
If we let we get |
Therefore, |
Step 3: |
---|
Therefore, we have |
Now, we use -substitution. |
Let |
Then, and |
Hence, we have |
(b)
Step 1: |
---|
We begin by using -substitution. |
Let |
Then, and |
Also, we have |
Hence, . |
Using all this information, we get |
Step 2: |
---|
Now, we have |
Step 3: |
---|
Now, for the remaining integral, we use partial fraction decomposition. |
Let |
Then, we multiply this equation by to get |
If we let we get |
If we let we get |
Thus, we have |
Using this equation, we have |
Step 4: |
---|
To complete this integral, we need to use -substitution. |
For the first integral, let Then, |
For the second integral, let Then, |
Finally, we integrate to get |
Final Answer: |
---|
(a) |
(b) |