Difference between revisions of "009B Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 32: Line 32:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{3x-1}{x(2x-1)}=\frac{A}{x}+\frac{B}{2x-1}.</math>
 +
|-
 +
|If we multiply both sides of this equation by <math>x(2x-1),</math> we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>3x-1=A(2x-1)+Bx.</math>
 
|}
 
|}
  
Line 37: Line 41:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, if we let <math>x=0,</math> we get <math>A=1.</math>
 +
|-
 +
|If we let <math>x=\frac{1}{2},</math> we get <math>B=1.</math>
 +
|-
 +
|Therefore,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{3x-1}{x(2x-1)}=\frac{1}{x}+\frac{1}{2x-1}.</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Therefore, we have
 
|-
 
|-
|  
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \frac{3x-1}{2x^2-x}~dx} & = & \displaystyle{\int \frac{1}{x}+\frac{1}{2x-1}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\int \frac{1}{x}~dx+\int \frac{1}{2x-1}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\ln |x|+\int \frac{1}{2x-1}~dx.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|Now, we use <math>u</math>-substitution.
 
|-
 
|-
 
|
 
|

Revision as of 14:10, 2 March 2017

Find the following integrals

(a)  

(b)  

Foundations:  
Through partial fraction decomposition, we can write the fraction
       
       for some constants


Solution:

(a)

Step 1:  
First, we factor the denominator to get
       
We use the method of partial fraction decomposition.
We let
       
If we multiply both sides of this equation by we get
       
Step 2:  
Now, if we let we get
If we let we get
Therefore,
       
Step 3:  
Therefore, we have
       
Now, we use -substitution.

(b)

Step 1:  
Step 2:  


Final Answer:  
(a)
(b)

Return to Sample Exam