Difference between revisions of "009B Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 51: Line 51:
 
|Now, we use &nbsp;<math>u</math>-substitution.  
 
|Now, we use &nbsp;<math>u</math>-substitution.  
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -5px">u=4x.</math>  
+
|Let &nbsp;<math style="vertical-align: -2px">u=4x.</math>  
 
|-
 
|-
|Then, &nbsp;<math style="vertical-align: -5px">du=4dx</math>&nbsp; and &nbsp;<math>\frac{du}{4}=dx.</math>  
+
|Then, &nbsp;<math style="vertical-align: -1px">du=4dx</math>&nbsp; and &nbsp;<math>\frac{du}{4}=dx.</math>  
 
|-
 
|-
 
|Also, we need to change the bounds of integration.
 
|Also, we need to change the bounds of integration.
Line 59: Line 59:
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -5px">u=4x,</math>  
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -5px">u=4x,</math>  
 
|-
 
|-
|we get &nbsp;<math style="vertical-align: -15px">u_1=4(0)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -16px">u_2=4\bigg(\frac{\sqrt{3}}{4}\bigg)=\sqrt{3}.</math>
+
|we get &nbsp;<math style="vertical-align: -6px">u_1=4(0)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -16px">u_2=4\bigg(\frac{\sqrt{3}}{4}\bigg)=\sqrt{3}.</math>
 
|-
 
|-
 
|Therefore, the integral becomes  
 
|Therefore, the integral becomes  
Line 128: Line 128:
 
|Let &nbsp;<math style="vertical-align: -5px">u=\ln(x).</math>  
 
|Let &nbsp;<math style="vertical-align: -5px">u=\ln(x).</math>  
 
|-
 
|-
|Then, &nbsp;<math style="vertical-align: -5px">du=\frac{1}{x}dx.</math>  
+
|Then, &nbsp;<math style="vertical-align: -15px">du=\frac{1}{x}dx.</math>  
 
|-
 
|-
 
|Also, we need to change the bounds of integration.
 
|Also, we need to change the bounds of integration.
Line 134: Line 134:
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -5px">u=\ln(x),</math>  
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -5px">u=\ln(x),</math>  
 
|-
 
|-
|we get &nbsp;<math style="vertical-align: -15px">u_1=\ln(1)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -16px">u_2=\ln(e)=1.</math>
+
|we get &nbsp;<math style="vertical-align: -6px">u_1=\ln(1)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -6px">u_2=\ln(e)=1.</math>
 
|-
 
|-
 
|Therefore, the integral becomes  
 
|Therefore, the integral becomes  

Revision as of 16:41, 1 March 2017

Evaluate the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1.
       
2. How would you integrate  

        You could use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

(a)

Step 1:  
First, we notice
       
Now, we use  -substitution.
Let  
Then,    and  
Also, we need to change the bounds of integration.
Plugging in our values into the equation  
we get    and  
Therefore, the integral becomes
       
Step 2:  
We now have

       

(b)

Step 1:  
We use  -substitution. Let  
Then,    and  
Therefore, the integral becomes
       
Step 2:  
We now have
       

(c)

Step 1:  
We use  -substitution.
Let  
Then,  
Also, we need to change the bounds of integration.
Plugging in our values into the equation  
we get    and  
Therefore, the integral becomes
       
Step 2:  
We now have

       


Final Answer:  
   (a)    
   (b)    
   (c)    

Return to Sample Exam