Difference between revisions of "009B Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 98: Line 98:
 
|Therefore, the integral becomes  
 
|Therefore, the integral becomes  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\frac{1}{3}\int \frac{1}{u^2}~du.</math>
 
|-
 
|-
 
|
 
|
Line 109: Line 109:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\int x^2\sqrt{1+x^3}~dx} & = & \displaystyle{\frac{1}{3}\int \sqrt{u}~du}\\
+
\displaystyle{\int \frac{x^2}{(1+x^3)^2}~dx} & = & \displaystyle{\frac{1}{3}\int \frac{1}{u^2}~du}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{2}{9}u^{\frac{3}{2}}+C}\\
+
& = & \displaystyle{-\frac{1}{3u}+C}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C.}
+
& = & \displaystyle{-\frac{1}{3(1+x^3)}+C.}
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
Line 143: Line 143:
 
|&nbsp; &nbsp;'''(a)''' &nbsp; &nbsp;<math>\frac{\pi}{12}</math>  
 
|&nbsp; &nbsp;'''(a)''' &nbsp; &nbsp;<math>\frac{\pi}{12}</math>  
 
|-
 
|-
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;  
+
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;<math>-\frac{1}{3(1+x^3)}+C</math>
 
|-
 
|-
 
|&nbsp; &nbsp;'''(c)''' &nbsp; &nbsp;  
 
|&nbsp; &nbsp;'''(c)''' &nbsp; &nbsp;  
 
|}
 
|}
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:26, 1 March 2017

Evaluate the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1.
       
2. How would you integrate  

        You could use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

(a)

Step 1:  
First, we notice
       
Now, we use  -substitution.
Let  
Then,    and  
Also, we need to change the bounds of integration.
Plugging in our values into the equation  
we get    and  
Therefore, the integral becomes
       
Step 2:  
We now have

       

(b)

Step 1:  
We use  -substitution. Let  
Then,    and  
Therefore, the integral becomes
       
Step 2:  
We now have
       

(c)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    
   (c)    

Return to Sample Exam