Difference between revisions of "009B Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
<span class="exam">(a) &nbsp;<math>\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx</math>
 
<span class="exam">(a) &nbsp;<math>\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx</math>
  
<span class="exam">(b) &nbsp;<math>\int \frac{x^2}{(1+x^3)^2}</math>
+
<span class="exam">(b) &nbsp;<math>\int \frac{x^2}{(1+x^3)^2}~dx</math>
  
 
<span class="exam">(c) &nbsp;<math>\int_1^e \frac{\cos(\ln(x))}{x}~dx</math>
 
<span class="exam">(c) &nbsp;<math>\int_1^e \frac{\cos(\ln(x))}{x}~dx</math>
Line 92: Line 92:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|We use &nbsp;<math style="vertical-align: 0px">u</math>-substitution. Let &nbsp;<math style="vertical-align: -2px">u=1+x^3.</math>
 +
|-
 +
|Then, &nbsp;<math style="vertical-align: 0px">du=3x^2dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math>
 +
|-
 +
|Therefore, the integral becomes
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math>
 
|-
 
|-
 
|
 
|
Line 100: Line 106:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|We now have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int x^2\sqrt{1+x^3}~dx} & = & \displaystyle{\frac{1}{3}\int \sqrt{u}~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2}{9}u^{\frac{3}{2}}+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C.}
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|

Revision as of 16:22, 1 March 2017

Evaluate the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1.
       
2. How would you integrate  

        You could use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

(a)

Step 1:  
First, we notice
       
Now, we use  -substitution.
Let  
Then,    and  
Also, we need to change the bounds of integration.
Plugging in our values into the equation  
we get    and  
Therefore, the integral becomes
       
Step 2:  
We now have

       

(b)

Step 1:  
We use  -substitution. Let  
Then,    and  
Therefore, the integral becomes
       
Step 2:  
We now have
       

(c)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    
   (c)    

Return to Sample Exam