Difference between revisions of "009B Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 23: Line 23:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We use the Direct Comparison Test for Improper Integrals.
 +
|-
 +
|For all &nbsp;<math>x</math>&nbsp; in &nbsp;<math>[1,\infty),</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>0\le \frac{\sin^2(x)}{x^3} \le \frac{1}{x^3}.</math>
 
|-
 
|-
|
+
|Also,
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{\sin^2(x)}{x^3}</math>&nbsp; and &nbsp;<math>\frac{1}{x^3}</math>
 
|-
 
|-
|
+
|are continuous on &nbsp;<math>[1,\infty).</math>
 
|}
 
|}
  
Line 35: Line 39:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int_1^\infty \frac{1}{x^3}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \int_1^a \frac{1}{x^3}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{1}{-2x^2}\bigg|_1^a}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{1}{-2a^2}+\frac{1}{2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}.}
 +
\end{array}</math>
 +
|-
 +
|Since &nbsp;<math>\int_1^\infty \frac{1}{x^3}~dx</math>&nbsp; converges,
 
|-
 
|-
|  
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math>
 
|-
 
|-
|
+
|converges by the Direct Comparison Test for Improper Integrals.
 
|-
 
|-
 
|
 
|
Line 49: Line 65:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;converges
 
|}
 
|}
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:12, 2 March 2017

Does the following integral converge or diverge? Prove your answer!

Foundations:  
Direct Comparison Test for Improper Integrals
        Let    and    be continuous on  
        where    for all    in  
       1.  If    converges, then    converges.
       2.  If    diverges, then    diverges.


Solution:

Step 1:  
We use the Direct Comparison Test for Improper Integrals.
For all    in  
       
Also,
         and  
are continuous on  
Step 2:  
Now, we have
       
Since    converges,
       
converges by the Direct Comparison Test for Improper Integrals.


Final Answer:  
       converges

Return to Sample Exam