Difference between revisions of "009B Sample Final 3, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 6: | Line 6: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''Direct Comparison Test for Improper Integrals''' |
|- | |- | ||
− | | | + | | Let <math style="vertical-align: -5px">f</math> and <math style="vertical-align: -5px">g</math> be continuous on <math style="vertical-align: -5px">[a,\infty)</math> |
|- | |- | ||
− | | | + | | where <math style="vertical-align: -5px">0\le f(x)\le g(x)</math> for all <math style="vertical-align: 0px">x</math> in <math style="vertical-align: -5px">[a,\infty).</math> |
|- | |- | ||
− | | | + | | '''1.''' If <math style="vertical-align: -14px">\int_a^\infty g(x)~dx</math> converges, then <math style="vertical-align: -14px">\int_a^\infty f(x)~dx</math> converges. |
+ | |- | ||
+ | | '''2.''' If <math style="vertical-align: -14px">\int_a^\infty f(x)~dx</math> diverges, then <math style="vertical-align: -14px">\int_a^\infty g(x)~dx</math> diverges. | ||
|} | |} | ||
Revision as of 10:21, 1 March 2017
Does the following integral converge or diverge? Prove your answer!
Foundations: |
---|
Direct Comparison Test for Improper Integrals |
Let and be continuous on |
where for all in |
1. If converges, then converges. |
2. If diverges, then diverges. |
Solution:
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|