Difference between revisions of "009B Sample Final 3, Problem 1"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Kayla Murray (talk | contribs) | Kayla Murray (talk | contribs)  | ||
| Line 13: | Line 13: | ||
| !Step 1:     | !Step 1:     | ||
| |- | |- | ||
| − | | | + | |Since our interval is  <math style="vertical-align: -5px">[-1,1]</math>  and we are using  <math style="vertical-align: -1px">4</math>  rectangles, each rectangle has width  <math style="vertical-align: -13px">\frac{1}{2}.</math>  | 
| |- | |- | ||
| − | | | + | |Let  <math style="vertical-align: -6px">f(x)=1-x^2.</math> | 
| |- | |- | ||
| − | | | + | |So, the left-endpoint Riemann sum is  | 
| |- | |- | ||
| − | | | + | |        <math style="vertical-align: 0px">S=\frac{1}{2}\bigg(f(-1)+f\bigg(-\frac{1}{2}\bigg)+f(0)+f\bigg(\frac{1}{2}\bigg)\bigg).</math> | 
| |} | |} | ||
| Line 25: | Line 25: | ||
| !Step 2:   | !Step 2:   | ||
| |- | |- | ||
| − | | | + | |Thus, the left-endpoint Riemann sum is  | 
| |- | |- | ||
| |   | |   | ||
| − | + |         <math>\begin{array}{rcl} | |
| − | + | \displaystyle{S} & = & \displaystyle{\frac{1}{2}\bigg(0+\frac{3}{4}+1+\frac{3}{4}\bigg)}\\ | |
| − | + | &&\\ | |
| − | + | & = & \displaystyle{\frac{5}{4}.} | |
| + | \end{array}</math> | ||
| |} | |} | ||
| Line 38: | Line 39: | ||
| !Final Answer:     | !Final Answer:     | ||
| |- | |- | ||
| − | |   | + | |       <math>\frac{5}{4}</math> | 
| |} | |} | ||
| [[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 17:29, 28 February 2017
Divide the interval into four subintervals of equal length and compute the left-endpoint Riemann sum of
| Foundations: | 
|---|
| The height of each rectangle in the left-endpoint Riemann sum is given by choosing the left endpoint of the interval. | 
Solution:
| Step 1: | 
|---|
| Since our interval is and we are using rectangles, each rectangle has width | 
| Let | 
| So, the left-endpoint Riemann sum is | 
| Step 2: | 
|---|
| Thus, the left-endpoint Riemann sum is | 
| 
 | 
| Final Answer: | 
|---|