Difference between revisions of "009B Sample Final 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 38: Line 38:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|Setting <math style="vertical-align: -14px">\sin x=\frac{2}{\pi}x</math>, we get three solutions: <math>x=0,\frac{\pi}{2},\frac{-\pi}{2}.</math>
+
|Setting &nbsp;<math style="vertical-align: -4px">\cos x=1-\cos x,</math>&nbsp; we get &nbsp;<math style="vertical-align: 0px">2\cos x=2.</math>
 
|-
 
|-
|So, the three intersection points are <math style="vertical-align: -15px">(0,0),\bigg(\frac{\pi}{2},1\bigg),\bigg(\frac{-\pi}{2},-1\bigg)</math>.
+
|Therefore, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\cos x=1.</math>
 +
|-
 +
|In the interval <math>0\le x\le 2\pi,</math> the solutions to this equation are
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>x=0</math> and <math>x=2\pi.</math>
 +
|-
 +
|Plugging these values into our equations,
 +
|-
 +
|we get the intersection points &nbsp;<math>(0,1)</math> and <math>(2\pi,1).</math>
 
|-
 
|-
 
|You can see these intersection points on the graph shown in Step 1.
 
|You can see these intersection points on the graph shown in Step 1.
Line 50: Line 60:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Using symmetry of the graph, the area bounded by the two functions is given by   
+
|The area bounded by the two functions is given by   
 
|-
 
|-
 
|
 
|
::<math>2\int_0^{\frac{\pi}{2}}\bigg(\sin(x)-\frac{2}{\pi}x\bigg)~dx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\int_0^{2\pi} (2-\cos x)-\cos x~dx.</math>
 
|-
 
|-
 
|
 
|
Line 64: Line 74:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
\displaystyle{2\int_0^{\frac{\pi}{2}}\bigg(\sin (x)-\frac{2}{\pi}x\bigg)~dx} & {=} & \displaystyle{2\bigg(-\cos (x)-\frac{x^2}{\pi}\bigg)\bigg|_0^{\frac{\pi}{2}}}\\
+
\displaystyle{\int_0^{2\pi} (2-\cos x)-\cos x~dx} & {=} & \displaystyle{\int_0^{2\pi} 2-2\cos x~dx}\\
 
&&\\
 
&&\\
& = & \displaystyle{2\bigg(-\cos \bigg(\frac{\pi}{2}\bigg)-\frac{1}{\pi}\bigg(\frac{\pi}{2}\bigg)^2\bigg)}-2(-\cos(0))\\
+
& = & \displaystyle{(2x-2\sin x)\bigg|_0^{2\pi}}\\
 
&&\\
 
&&\\
& = & \displaystyle{2\bigg(-\frac{\pi}{4}\bigg)+2}\\
+
& = & \displaystyle{(4\pi-2\sin(2\pi))-(0-2\sin(0))}\\
 
&&\\
 
&&\\
& = & \displaystyle{-\frac{\pi}{2}+2}.\\
+
& = & \displaystyle{4\pi.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 79: Line 89:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' &nbsp;<math>(0,0),\bigg(\frac{\pi}{2},1\bigg),\bigg(\frac{-\pi}{2},-1\bigg)</math>
+
|&nbsp; &nbsp;'''(a)''' &nbsp; &nbsp;<math>(0,1),(2\pi,1)</math>
 
|-
 
|-
|'''(b)''' &nbsp;<math>-\frac{\pi}{2}+2</math>  
+
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;<math>4\pi</math>  
 
|}
 
|}
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 08:20, 28 February 2017

Consider the area bounded by the following two functions:

  and  

(a) Sketch the graphs and find their points of intersection.

(b) Find the area bounded by the two functions.

Foundations:  
Recall:
1. You can find the intersection points of two functions, say  

       by setting    and solving for  

2. The area between two functions,    and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x),}   is given by  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_a^b f(x)-g(x)~dx}

       for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\leq x\leq b,}   where  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)}   is the upper function and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)}   is the lower function.


Solution:

(a)

Step 1:  
First, we graph these two functions.
Insert graph here
Step 2:  
Setting  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos x=1-\cos x,}   we get  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cos x=2.}
Therefore, we have
       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos x=1.}
In the interval Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\le x\le 2\pi,} the solutions to this equation are
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=2\pi.}
Plugging these values into our equations,
we get the intersection points  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,1)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2\pi,1).}
You can see these intersection points on the graph shown in Step 1.

(b)

Step 1:  
The area bounded by the two functions is given by

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_0^{2\pi} (2-\cos x)-\cos x~dx.}

Step 2:  
Lastly, we integrate to get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int_0^{2\pi} (2-\cos x)-\cos x~dx} & {=} & \displaystyle{\int_0^{2\pi} 2-2\cos x~dx}\\ &&\\ & = & \displaystyle{(2x-2\sin x)\bigg|_0^{2\pi}}\\ &&\\ & = & \displaystyle{(4\pi-2\sin(2\pi))-(0-2\sin(0))}\\ &&\\ & = & \displaystyle{4\pi.}\\ \end{array}}


Final Answer:  
   (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0,1),(2\pi,1)}
   (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4\pi}

Return to Sample Exam