Difference between revisions of "009B Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;for some constants <math style="vertical-align: -4px">A,B</math>.
+
|&nbsp; &nbsp; &nbsp; &nbsp;for some constants <math style="vertical-align: -4px">A,B.</math>
 
|-
 
|-
 
|'''2.''' We have the Pythagorean identity  
 
|'''2.''' We have the Pythagorean identity  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x)</math>.
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x).</math>
 
|}
 
|}
  
Line 91: Line 91:
 
|Now, we need to use partial fraction decomposition for the second integral.
 
|Now, we need to use partial fraction decomposition for the second integral.
 
|-
 
|-
|Since &nbsp;<math style="vertical-align: -5px">2x^2+x=x(2x+1),</math>&nbsp; we let &nbsp;<math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}.</math>
+
|Since &nbsp;<math style="vertical-align: -5px">2x^2+x=x(2x+1),</math>&nbsp; we let  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}.</math>
 
|-
 
|-
 
|Multiplying both sides of the last equation by &nbsp;<math style="vertical-align: -5px">x(2x+1),</math>
 
|Multiplying both sides of the last equation by &nbsp;<math style="vertical-align: -5px">x(2x+1),</math>
 
|-
 
|-
|we get &nbsp;<math style="vertical-align: -5px">1-x=A(2x+1)+Bx.</math>
+
|we get  
 
|-
 
|-
|If we let &nbsp;<math style="vertical-align: 0px">x=0,</math> the last equation becomes &nbsp;<math style="vertical-align: -1px">1=A.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">1-x=A(2x+1)+Bx.</math>
 +
|-
 +
|If we let &nbsp;<math style="vertical-align: -5px">x=0,</math> the last equation becomes &nbsp;<math style="vertical-align: -1px">1=A.</math>
 
|-
 
|-
 
|If we let &nbsp;<math style="vertical-align: -14px">x=-\frac{1}{2},</math>&nbsp; then we get &nbsp;<math style="vertical-align: -13px">\frac{3}{2}=-\frac{1}{2}\,B.</math>&nbsp; Thus, &nbsp;<math style="vertical-align: 0px">B=-3.</math>
 
|If we let &nbsp;<math style="vertical-align: -14px">x=-\frac{1}{2},</math>&nbsp; then we get &nbsp;<math style="vertical-align: -13px">\frac{3}{2}=-\frac{1}{2}\,B.</math>&nbsp; Thus, &nbsp;<math style="vertical-align: 0px">B=-3.</math>
 
|-
 
|-
|So, in summation, we have &nbsp;<math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}.</math>
+
|So, in summation, we have  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}.</math>
 
|}
 
|}
  
Line 146: Line 152:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we write &nbsp;<math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx</math>.
+
|First, we write  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx.</math>
 +
|-
 +
|Using the identity &nbsp;<math style="vertical-align: -5px">\sin^2x+\cos^2x=1,</math>&nbsp; we get
 
|-
 
|-
|Using the identity &nbsp;<math style="vertical-align: -2px">\sin^2x+\cos^2x=1,</math>&nbsp; we get &nbsp;<math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math>  
 
|-
 
|-
 
|If we use this identity, we have
 
|If we use this identity, we have
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx</math>.
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx.</math>
 
|-
 
|-
 
|
 
|

Revision as of 11:49, 27 February 2017

Compute the following integrals.

(a)  

(b)  

(c)  

Foundations:  
1. Through partial fraction decomposition, we can write the fraction
       
       for some constants
2. We have the Pythagorean identity
       


Solution:

(a)

Step 1:  
We first distribute to get
Now, for the first integral on the right hand side of the last equation, we use integration by parts.
Let and . Then, and .
So, we have
Step 2:  
Now, for the one remaining integral, we use -substitution.
Let . Then, .
So, we have

(b)

Step 1:  
First, we add and subtract    from the numerator.
So, we have
Step 2:  
Now, we need to use partial fraction decomposition for the second integral.
Since    we let
       
Multiplying both sides of the last equation by  
we get
       
If we let   the last equation becomes  
If we let    then we get    Thus,  
So, in summation, we have
       
Step 3:  
If we plug in the last equation from Step 2 into our final integral in Step 1, we have

       

Step 4:  
For the final remaining integral, we use  -substitution.
Let    Then,    and  
Thus, our final integral becomes

       

Therefore, the final answer is

       

(c)

Step 1:  
First, we write
       
Using the identity    we get
       
If we use this identity, we have
       
Step 2:  
Now, we proceed by  -substitution.
Let    Then,  
So we have

       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam