Difference between revisions of "009B Sample Final 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 14: | Line 14: | ||
| <math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math> | | <math style="vertical-align: -18px">\frac{1}{(x+1)(x+2)}=\frac{A}{x+1}+\frac{B}{x+2}</math> | ||
|- | |- | ||
− | | for some constants <math style="vertical-align: -4px">A,B</math> | + | | for some constants <math style="vertical-align: -4px">A,B.</math> |
|- | |- | ||
|'''2.''' We have the Pythagorean identity | |'''2.''' We have the Pythagorean identity | ||
|- | |- | ||
− | | <math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x)</math> | + | | <math style="vertical-align: -5px">\sin^2(x)=1-\cos^2(x).</math> |
|} | |} | ||
Line 91: | Line 91: | ||
|Now, we need to use partial fraction decomposition for the second integral. | |Now, we need to use partial fraction decomposition for the second integral. | ||
|- | |- | ||
− | |Since <math style="vertical-align: -5px">2x^2+x=x(2x+1),</math> we let <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}.</math> | + | |Since <math style="vertical-align: -5px">2x^2+x=x(2x+1),</math> we let |
+ | |- | ||
+ | | <math>\frac{1-x}{2x^2+x}=\frac{A}{x}+\frac{B}{2x+1}.</math> | ||
|- | |- | ||
|Multiplying both sides of the last equation by <math style="vertical-align: -5px">x(2x+1),</math> | |Multiplying both sides of the last equation by <math style="vertical-align: -5px">x(2x+1),</math> | ||
|- | |- | ||
− | |we get | + | |we get |
|- | |- | ||
− | |If we let <math style="vertical-align: | + | | <math style="vertical-align: -5px">1-x=A(2x+1)+Bx.</math> |
+ | |- | ||
+ | |If we let <math style="vertical-align: -5px">x=0,</math> the last equation becomes <math style="vertical-align: -1px">1=A.</math> | ||
|- | |- | ||
|If we let <math style="vertical-align: -14px">x=-\frac{1}{2},</math> then we get <math style="vertical-align: -13px">\frac{3}{2}=-\frac{1}{2}\,B.</math> Thus, <math style="vertical-align: 0px">B=-3.</math> | |If we let <math style="vertical-align: -14px">x=-\frac{1}{2},</math> then we get <math style="vertical-align: -13px">\frac{3}{2}=-\frac{1}{2}\,B.</math> Thus, <math style="vertical-align: 0px">B=-3.</math> | ||
|- | |- | ||
− | |So, in summation, we have <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}.</math> | + | |So, in summation, we have |
+ | |- | ||
+ | | <math>\frac{1-x}{2x^2+x}=\frac{1}{x}+\frac{-3}{2x+1}.</math> | ||
|} | |} | ||
Line 146: | Line 152: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we write <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx</math> | + | |First, we write |
+ | |- | ||
+ | | <math style="vertical-align: -13px">\int\sin^3x~dx=\int \sin^2 x \sin x~dx.</math> | ||
+ | |- | ||
+ | |Using the identity <math style="vertical-align: -5px">\sin^2x+\cos^2x=1,</math> we get | ||
|- | |- | ||
− | | | + | | <math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math> |
|- | |- | ||
|If we use this identity, we have | |If we use this identity, we have | ||
|- | |- | ||
− | | <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx</math> | + | | <math style="vertical-align: -13px">\int\sin^3x~dx=\int (1-\cos^2x)\sin x~dx.</math> |
|- | |- | ||
| | | |
Revision as of 11:49, 27 February 2017
Compute the following integrals.
(a)
(b)
(c)
Foundations: |
---|
1. Through partial fraction decomposition, we can write the fraction |
for some constants |
2. We have the Pythagorean identity |
Solution:
(a)
Step 1: |
---|
We first distribute to get |
|
Now, for the first integral on the right hand side of the last equation, we use integration by parts. |
Let and . Then, and . |
So, we have |
|
Step 2: |
---|
Now, for the one remaining integral, we use -substitution. |
Let . Then, . |
So, we have |
|
(b)
Step 1: |
---|
First, we add and subtract from the numerator. |
So, we have |
|
Step 2: |
---|
Now, we need to use partial fraction decomposition for the second integral. |
Since we let |
Multiplying both sides of the last equation by |
we get |
If we let the last equation becomes |
If we let then we get Thus, |
So, in summation, we have |
Step 3: |
---|
If we plug in the last equation from Step 2 into our final integral in Step 1, we have |
|
Step 4: |
---|
For the final remaining integral, we use -substitution. |
Let Then, and |
Thus, our final integral becomes |
|
Therefore, the final answer is |
|
(c)
Step 1: |
---|
First, we write |
Using the identity we get |
If we use this identity, we have |
Step 2: |
---|
Now, we proceed by -substitution. |
Let Then, |
So we have |
|
Final Answer: |
---|
(a) |
(b) |
(c) |