Difference between revisions of "009B Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;You could use &nbsp;<math style="vertical-align: -1px">u</math>-substitution. Let &nbsp;<math style="vertical-align: 0px">u=x^2.</math>&nbsp; Then, &nbsp;<math style="vertical-align: 0px">du=2xdx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;You could use &nbsp;<math style="vertical-align: -1px">u</math>-substitution.  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;Let &nbsp;<math style="vertical-align: 0px">u=x^2.</math>&nbsp; Then, &nbsp;<math style="vertical-align: 0px">du=2xdx.</math>
 
|-
 
|-
 
|
 
|
Line 38: Line 40:
 
|Plugging our values into the equation &nbsp;<math style="vertical-align: -4px">u=t^2,</math>&nbsp; we get  
 
|Plugging our values into the equation &nbsp;<math style="vertical-align: -4px">u=t^2,</math>&nbsp; we get  
 
|-
 
|-
|<math style="vertical-align: -5px">u_1=(-1)^2=1</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">u_2=x^2.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">u_1=(-1)^2=1</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">u_2=x^2.</math>
 
|}
 
|}
  
Line 70: Line 72:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|If we take the derivative, we get &nbsp;<math style="vertical-align: -5px">f'(x)=\sin(x^2)2x,</math>&nbsp; since &nbsp;<math style="vertical-align: -5px">\cos(1)</math>&nbsp; is just a constant.
+
|If we take the derivative, we get &nbsp;<math style="vertical-align: -5px">f'(x)=\sin(x^2)2x,</math>&nbsp; since &nbsp;<math style="vertical-align: -5px">\cos(1)</math>&nbsp; is a constant.
 
|}
 
|}
  

Revision as of 11:39, 18 March 2017

We would like to evaluate

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\bigg(\int_{-1}^{x} \sin(t^2)2t\,dt\bigg).}

(a) Compute  

(b) Find  

(c) State the Fundamental Theorem of Calculus.

(d) Use the Fundamental Theorem of Calculus to compute    without first computing the integral.

Foundations:  
How would you integrate  

       You could use  -substitution.

       Let    Then,  

       So, we get  


Solution:

(a)

Step 1:  
We proceed using  -substitution.
Let    Then,  
Since this is a definite integral, we need to change the bounds of integration.
Plugging our values into the equation    we get
         and  
Step 2:  
So, we have

       


(b)

Step 1:  
From part (a), we have  
Step 2:  
If we take the derivative, we get    since    is a constant.

(c)

Step 1:  
The Fundamental Theorem of Calculus has two parts.
The Fundamental Theorem of Calculus, Part 1
       Let    be continuous on    and let  
       Then,    is a differentiable function on    and  
Step 2:  
The Fundamental Theorem of Calculus, Part 2
       Let    be continuous on    and let    be any antiderivative of  
       Then,  
(d)  
By the Fundamental Theorem of Calculus, Part 1,

       


Final Answer:  
   (a)    
   (b)    
   (c)    See above
   (d)    

Return to Sample Exam