Difference between revisions of "009A Sample Final 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 6: | Line 6: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |'''1.''' | + | |'''1.''' '''Chain Rule''' |
|- | |- | ||
| − | | | + | | <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math> |
| − | + | |- | |
| + | |'''2.''' | ||
| + | |- | ||
| + | | <math>\frac{d}{dx}(\cos^{-1}(x))=\frac{-1}{\sqrt{1-x^2}}</math> | ||
|- | |- | ||
| − | |''' | + | |'''3.''' The equation of the tangent line to <math style="vertical-align: -5px">f(x)</math> at the point <math style="vertical-align: -5px">(a,b)</math> is |
|- | |- | ||
| − | | | + | | <math style="vertical-align: -5px">y=m(x-a)+b</math> where <math style="vertical-align: -5px">m=f'(a).</math> |
| − | |||
|} | |} | ||
| Line 23: | Line 25: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |First, we compute& | + | |First, we compute <math style="vertical-align: -13px">\frac{dy}{dx}.</math> |
| + | |- | ||
| + | |Using the Chain Rule, we get | ||
|- | |- | ||
| | | | ||
| − | + | <math>\begin{array}{rcl} | |
| + | \displaystyle{\frac{dy}{dx}} & = & \displaystyle{\frac{-1}{\sqrt{1-(2x)^2}}(2x)'}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{-2}{\sqrt{1-4x^2}}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 34: | Line 42: | ||
|To find the equation of the tangent line, we first find the slope of the line. | |To find the equation of the tangent line, we first find the slope of the line. | ||
|- | |- | ||
| − | |Using <math style="vertical-align: - | + | |Using <math style="vertical-align: -14px">x_0=\frac{\sqrt{3}}{4}</math> in the formula for <math style="vertical-align: -12px">\frac{dy}{dx}</math> from Step 1, we get |
|- | |- | ||
| | | | ||
| − | + | <math>\begin{array}{rcl} | |
| + | \displaystyle{m} & = & \displaystyle{\frac{-2}{\sqrt{1-4(\frac{\sqrt{3}}{4})^2}}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{-2}{\sqrt{\frac{1}{4}}}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{-4.} | ||
| + | \end{array}</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 3: | ||
|- | |- | ||
| − | |To get a point on the line, we plug in <math style="vertical-align: - | + | |To get a point on the line, we plug in <math style="vertical-align: -14px">x_0=\frac{\sqrt{3}}{4}</math> into the equation given. |
|- | |- | ||
| − | |So, we have& | + | |So, we have |
| + | |- | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{y_0} & = & \displaystyle{\cos^{-1}\bigg(2\frac{\sqrt{3}}{4}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\cos^{-1}\bigg(\frac{\sqrt{3}}{2}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\pi}{6}.} | ||
| + | \end{array}</math> | ||
|- | |- | ||
| − | |Thus, the equation of the tangent line is& | + | |Thus, the equation of the tangent line is <math style="vertical-align: -14px">y=-4\bigg(x-\frac{\sqrt{3}}{4}\bigg)+\frac{\pi}{6}.</math> |
|} | |} | ||
| Line 51: | Line 78: | ||
|- | |- | ||
| | | | ||
| − | + | <math>\frac{dy}{dx}=\frac{-2}{\sqrt{1-4x^2}}</math> | |
|- | |- | ||
| | | | ||
| − | + | <math>y=-4\bigg(x-\frac{\sqrt{3}}{4}\bigg)+\frac{\pi}{6}</math> | |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 10:09, 27 February 2017
If compute and find the equation for the tangent line at
You may leave your answers in point-slope form.
| Foundations: |
|---|
| 1. Chain Rule |
| 2. |
| 3. The equation of the tangent line to at the point is |
| where |
Solution:
| Step 1: |
|---|
| First, we compute |
| Using the Chain Rule, we get |
|
|
| Step 2: |
|---|
| To find the equation of the tangent line, we first find the slope of the line. |
| Using in the formula for from Step 1, we get |
|
|
| Step 3: |
|---|
| To get a point on the line, we plug in into the equation given. |
| So, we have |
|
|
| Thus, the equation of the tangent line is |
| Final Answer: |
|---|
|
|
|
|