Difference between revisions of "009A Sample Final 1, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 33: | Line 33: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |If <math style="vertical-align: -4px">s=50,</math> then | + | |If <math style="vertical-align: -4px">s=50,</math> then |
|- | |- | ||
| − | | | + | | <math style="vertical-align: -2px">h=\sqrt{50^2-30^2}=40.</math> |
|- | |- | ||
| − | |Solving for <math style="vertical-align: -5px">s',</math> we get <math style="vertical-align: -14px">s'=\frac{24}{5}</math> | + | |So, we have |
| + | |- | ||
| + | | <math style="vertical-align: -5px">2(40)6=2(50)s'.</math> | ||
| + | |- | ||
| + | |Solving for <math style="vertical-align: -5px">s',</math> we get <math style="vertical-align: -14px">s'=\frac{24}{5} \text{ m/s.}</math> | ||
|} | |} | ||
| Line 44: | Line 48: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | <math style="vertical-align: -14px">s'=\frac{24}{5}</math> | + | | <math style="vertical-align: -14px">s'=\frac{24}{5} \text{ m/s}</math> |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 13:16, 18 March 2017
A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing
when 50 (meters) of the string has been let out?
| Foundations: |
|---|
| The Pythagorean Theorem |
| For a right triangle with side lengths where is the length of the |
|
hypotenuse, we have |
Solution:
| Step 1: |
|---|
| Insert diagram. |
| From the diagram, we have by the Pythagorean Theorem. |
| Taking derivatives, we get |
|
|
| Step 2: |
|---|
| If then |
| So, we have |
| Solving for we get |
| Final Answer: |
|---|