Difference between revisions of "009A Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
   \right.
 
   \right.
 
</math>
 
</math>
<span class="exam">(a) Show that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=3</math>.
+
<span class="exam">(a) Show that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=3.</math>
  
 
<span class="exam">(b) Using the limit definition of the derivative, and computing the limits from both sides, show that &nbsp;<math style="vertical-align: -3px">f(x)</math>&nbsp; is differentiable at &nbsp;<math style="vertical-align: 0px">x=3</math>.
 
<span class="exam">(b) Using the limit definition of the derivative, and computing the limits from both sides, show that &nbsp;<math style="vertical-align: -3px">f(x)</math>&nbsp; is differentiable at &nbsp;<math style="vertical-align: 0px">x=3</math>.
Line 71: Line 71:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),</math>
 
|-
 
|-
|<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous.
+
|<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=3.</math>
 
|}
 
|}
  
Line 132: Line 132:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>&thinsp; is continuous.
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>&thinsp; is continuous at <math style="vertical-align: 0px">x=3.</math>
 
|-
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math>  
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math>  

Revision as of 13:12, 18 March 2017

Consider the following piecewise defined function:

(a) Show that    is continuous at  

(b) Using the limit definition of the derivative, and computing the limits from both sides, show that    is differentiable at  .

Foundations:  
1.    is continuous at    if
       
2. The definition of derivative for    is
       


Solution:

(a)

Step 1:  
We first calculate    We have

       

Step 2:  
Now, we calculate    We have

       

Step 3:  
Now, we calculate    We have

       

Since
       
  is continuous at  

(b)

Step 1:  
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have

       

Step 2:  
Now, we have

       

Step 3:  
Since
       
  is differentiable at  


Final Answer:  
    (a)     Since   is continuous at
    (b)     Since

                is differentiable at

Return to Sample Exam