Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 46: Line 46:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\frac{(-3)(-3-3)}{2}\,=\,\frac{18}{2}\,=\,9.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}} & = & \displaystyle{\frac{(-3)(-3-3)}{2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{18}{2}}\\
 +
&&\\
 +
& = & \displaystyle{9.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 67: Line 73:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|This limit is &nbsp; <math>+\infty.</math>
+
|This limit is &nbsp; <math>\infty.</math>
 
|}
 
|}
  
Line 94: Line 100:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}}\\
|So, we have
+
&&\\
|-
+
& = & \displaystyle{-\frac{3}{\sqrt{4}}}\\
|
+
&&\\
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math>
+
& = & \displaystyle{-\frac{3}{2}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 108: Line 115:
 
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; <math style="vertical-align: 0px">9</math>
 
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; <math style="vertical-align: 0px">9</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp; <math style="vertical-align: 0px">+\infty</math>
+
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp; <math style="vertical-align: 0px">\infty</math>
 
|-
 
|-
 
|&nbsp; &nbsp; '''(c)'''&nbsp; &nbsp; <math style="vertical-align: -15px">-\frac{3}{2}</math>
 
|&nbsp; &nbsp; '''(c)'''&nbsp; &nbsp; <math style="vertical-align: -15px">-\frac{3}{2}</math>
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:09, 18 March 2017

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

(a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}}

(b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}}

(c)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}}

Foundations:  
L'Hôpital's Rule
        Suppose that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} f(x)}   and  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} g(x)}   are both zero or both  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm \infty .}

        If  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}}   is finite or  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm \infty ,}

        then  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.}


Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.}

So, we can cancel  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x+3}   in the numerator and denominator. Thus, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)}{2}.}

Step 2:  
Now, we can just plug in  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=-3}   to get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}} & = & \displaystyle{\frac{(-3)(-3-3)}{2}}\\ &&\\ & = & \displaystyle{\frac{18}{2}}\\ &&\\ & = & \displaystyle{9.} \end{array}}

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\ &&\\ & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{\cos(2x)}{x}.}\\ \end{array}}

Step 2:  
This limit is   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty.}

(c)

Step 1:  
We have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.}

Since we are looking at the limit as  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x}   goes to negative infinity, we have  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{x^2}=-x.}
So, we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.}

Step 2:  
We simplify to get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}}\\ &&\\ & = & \displaystyle{-\frac{3}{\sqrt{4}}}\\ &&\\ & = & \displaystyle{-\frac{3}{2}.} \end{array}}


Final Answer:  
    (a)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9}
    (b)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \infty}
    (c)    Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{3}{2}}

Return to Sample Exam