Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' Recall the trig identity &nbsp;<math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math>
+
|'''1.''' Recall the trig identity  
 
|-
 
|-
|'''2.''' Recall the trig identity &nbsp;<math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math>
 +
|-
 +
|'''2.''' Recall the trig identity  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math>
 
|-
 
|-
 
|'''3.''' How would you integrate &nbsp;<math style="vertical-align: -1px">\tan x~dx?</math>
 
|'''3.''' How would you integrate &nbsp;<math style="vertical-align: -1px">\tan x~dx?</math>
Line 109: Line 113:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|One of the double angle formulas is &nbsp;<math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math>  
+
|One of the double angle formulas is  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">\cos(2x)=1-2\sin^2(x).</math>  
 
|-
 
|-
 
|Solving for &nbsp;<math style="vertical-align: -5px">\sin^2(x),</math>&nbsp; we get  
 
|Solving for &nbsp;<math style="vertical-align: -5px">\sin^2(x),</math>&nbsp; we get  

Revision as of 11:17, 18 March 2017

Evaluate the indefinite and definite integrals.

(a)  

(b)  


Foundations:  
1. Recall the trig identity
       
2. Recall the trig identity
       
3. How would you integrate  

        You could use  -substitution.

        First, write  

        Now, let    Then,  

        Thus,

       


Solution:

(a)

Step 1:  
We start by writing

       

Since    we have

       

Step 2:  
Now, we need to use  -substitution for the first integral.

Let  

Then,  
So, we have

       

Step 3:  
For the remaining integral, we also need to use  -substitution.
First, we write

       

Now, we let  
Then,  
Therefore, we get

       

(b)

Step 1:  
One of the double angle formulas is
       
Solving for    we get
       
Plugging this identity into our integral, we get

       

Step 2:  
If we integrate the first integral, we get

       

Step 3:  
For the remaining integral, we need to use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral and we are using -substitution,
we need to change the bounds of integration.
We have    and  
So, the integral becomes

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam