Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 56: Line 56:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
\displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\
+
\displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{-\frac{1}{3}\cos(u)+C}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{-1}{3}\cos(x^3)+C.}\\
+
& = & \displaystyle{-\frac{1}{3}\cos(x^3)+C.}\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 96: Line 96:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{-1}{3}\cos(x^3)+C</math>
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>-\frac{1}{3}\cos(x^3)+C</math>
 
|-
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>0</math>
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>0</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:12, 18 March 2017

Compute the following integrals:

(a)  

(b)  


Foundations:  
How would you integrate  

        You could use  -substitution.

        Let  
        Then,  
        Thus,

     


Solution:

(a)

Step 1:  
We proceed using  -substitution.
Let  
Then,    and  
Therefore, we have

       

Step 2:  
We integrate to get

       

(b)

Step 1:  
We proceed using u substitution.
Let  
Then,  
Since this is a definite integral, we need to change the bounds of integration.
We have    and  
Step 2:  
Therefore, we get

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam