Difference between revisions of "009B Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
::<math>F(x)=\int_{\cos (x)}^5 \frac{1}{1+u^{10}}~du.</math>
 
::<math>F(x)=\int_{\cos (x)}^5 \frac{1}{1+u^{10}}~du.</math>
  
 +
<hr>
 +
(insert picture of handwritten solution)
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009B Sample Midterm 3, Problem 2 Detailed Solution|'''<u>Detailed Solution for this Problem</u>''']]
!Foundations: &nbsp;
 
|-
 
|What does Part 1 of the Fundamental Theorem of Calculus
 
|-
 
|say is the derivative of &nbsp;<math style="vertical-align: -16px">G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?</math>
 
|-
 
|
 
&nbsp;&nbsp;&nbsp;&nbsp; First, we need to switch the bounds of integration.
 
|-
 
|
 
&nbsp;&nbsp;&nbsp;&nbsp; So, we have &nbsp;<math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math>
 
|-
 
|
 
&nbsp;&nbsp;&nbsp;&nbsp; By Part 1 of the Fundamental Theorem of Calculus, &nbsp;<math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math>
 
|}
 
  
 
'''Solution:'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|
 
Let &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and let &nbsp;<math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
 
|-
 
|
 
Then, &nbsp;<math style="vertical-align: -1px">F</math>&nbsp; is a differentiable function on &nbsp;<math style="vertical-align: -5px">(a,b)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">F'(x)=f(x).</math>
 
|-
 
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|
 
Let &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and let &nbsp;<math style="vertical-align: -1px">F</math>&nbsp; be any antiderivative of &nbsp;<math style="vertical-align: -5px">f.</math> Then,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|First, 
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math>
 
|-
 
|Now, let &nbsp;<math style="vertical-align: -5px">g(x)=\cos(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math>
 
|-
 
|Therefore,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F(x)=-G(g(x)).</math>
 
|-
 
|Hence,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math>
 
|-
 
|by the Chain Rule.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">g'(x)=-\sin(x).</math>
 
|-
 
|By the Fundamental Theorem of Calculus,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -15px">G'(x)=\frac{1}{1+x^{10}}.</math>
 
|-
 
|Hence,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\
 
&&\\
 
& = & \displaystyle{\frac{\sin(x)}{1+\cos^{10}x}.}\\
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; See Step 1 above
 
|-
 
|&nbsp;&nbsp; &nbsp; &nbsp; <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|}
 
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:23, 4 November 2017

State the fundamental theorem of calculus, and use this theorem to find the derivative of


(insert picture of handwritten solution)

Detailed Solution for this Problem

Return to Sample Exam