Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |'''1.''' Recall the trig identity | + | |'''1.''' Recall the trig identity |
|- | |- | ||
− | |'''2.''' Also, <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> | + | | <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math> |
+ | |- | ||
+ | |'''2.''' Also, | ||
+ | |- | ||
+ | | <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> | ||
|- | |- | ||
|'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | |'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | ||
|- | |- | ||
| | | | ||
− | You | + | You can use <math style="vertical-align: 0px">u</math>-substitution. |
|- | |- | ||
| Let <math style="vertical-align: -2px">u=\tan x.</math> | | Let <math style="vertical-align: -2px">u=\tan x.</math> | ||
Line 22: | Line 26: | ||
|- | |- | ||
| | | | ||
− | Thus, <math | + | Thus, |
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \sec^2(x)\tan(x)~dx} & = & \displaystyle{\int u~du}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{u^2}{2}+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\tan^2x}{2}+C.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Revision as of 13:53, 14 March 2017
Evaluate the integral:
Foundations: |
---|
1. Recall the trig identity |
2. Also, |
3. How would you integrate |
You can use -substitution. |
Let |
Then, |
Thus, |
Solution:
Step 1: |
---|
First, we write |
Using the trig identity |
we have |
Plugging in the last identity into one of the we get |
|
by using the identity again on the last equality. |
Step 2: |
---|
So, we have |
For the first integral, we need to use -substitution. |
Let |
Then, |
So, we have |
Step 3: |
---|
We integrate to get |
|
Final Answer: |
---|