Difference between revisions of "009B Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' Recall the trig identity &nbsp;<math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math>
+
|'''1.''' Recall the trig identity  
 
|-
 
|-
|'''2.''' Also, &nbsp;<math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math>
 +
|-
 +
|'''2.''' Also,  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math>
 
|-
 
|-
 
|'''3.''' How would you integrate &nbsp;<math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math>
 
|'''3.''' How would you integrate &nbsp;<math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; You could use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
+
&nbsp; &nbsp; &nbsp; &nbsp; You can use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -2px">u=\tan x.</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -2px">u=\tan x.</math>  
Line 22: Line 26:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Thus, &nbsp;<math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Thus,  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int \sec^2(x)\tan(x)~dx} & = & \displaystyle{\int u~du}\\
 +
&&\\
 +
& = & \displaystyle{\frac{u^2}{2}+C}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\tan^2x}{2}+C.}
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 13:53, 14 March 2017

Evaluate the integral:


Foundations:  
1. Recall the trig identity
       
2. Also,
       
3. How would you integrate  

        You can use  -substitution.

        Let  
        Then,  

        Thus,

       


Solution:

Step 1:  
First, we write
       
Using the trig identity  
we have
       
Plugging in the last identity into one of the    we get

       

by using the identity again on the last equality.
Step 2:  
So, we have
       
For the first integral, we need to use  -substitution.
Let  
Then,  
So, we have
       
Step 3:  
We integrate to get

       


Final Answer:  
       

Return to Sample Exam