Difference between revisions of "009B Sample Midterm 1, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 19: | Line 19: | ||
|- | |- | ||
| | | | ||
| − | Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math> | + | Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math> |
|- | |- | ||
| − | | Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -12px">v=\frac{x^2}{2}.</math> | + | | Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -12px">v=\frac{x^2}{2}.</math> |
|- | |- | ||
| | | | ||
| Line 40: | Line 40: | ||
|We proceed using integration by parts. | |We proceed using integration by parts. | ||
|- | |- | ||
| − | |Let <math style="vertical-align: 0px">u=x^2</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> | + | |Let <math style="vertical-align: 0px">u=x^2</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: 0px">du=2xdx</math> and <math style="vertical-align: 0px">v=e^x.</math> | + | |Then, <math style="vertical-align: 0px">du=2xdx</math> and <math style="vertical-align: 0px">v=e^x.</math> |
|- | |- | ||
|Therefore, we have | |Therefore, we have | ||
| Line 54: | Line 54: | ||
|Now, we need to use integration by parts again. | |Now, we need to use integration by parts again. | ||
|- | |- | ||
| − | |Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> | + | |Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> |
|- | |- | ||
| − | |Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x.</math> | + | |Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x.</math> |
|- | |- | ||
|Building on the previous step, we have | |Building on the previous step, we have | ||
Revision as of 17:57, 26 February 2017
Evaluate the indefinite and definite integrals.
(a)
(b)
| Foundations: |
|---|
| 1. Integration by parts tells us that |
| 2. How would you integrate |
|
You could use integration by parts. |
|
Let and |
| Then, and |
|
|
Solution:
(a)
| Step 1: |
|---|
| We proceed using integration by parts. |
| Let and |
| Then, and |
| Therefore, we have |
| Step 2: |
|---|
| Now, we need to use integration by parts again. |
| Let and |
| Then, and |
| Building on the previous step, we have |
(b)
| Step 1: |
|---|
| We proceed using integration by parts. |
| Let and |
| Then, and |
| Therefore, we have |
|
|
| Step 2: |
|---|
| Now, we evaluate to get |
| Final Answer: |
|---|
| (a) |
| (b) |