Difference between revisions of "009A Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' '''Limit Definition of Derivative'''
+
|'''1.''' &nbsp;<math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}</math>
+
|'''2.''' The equation of the tangent line to &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(a,b)</math>&nbsp; is
 
|-
 
|-
|'''2.''' '''Equation of a tangent line'''
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">y=m(x-a)+b</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">m=f'(a).</math>
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; The equation of the tangent line to <math style="vertical-align: -5px">f(x)</math> at the point <math style="vertical-align: -5px">(a,b)</math> is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">y=m(x-a)+b</math> where <math style="vertical-align: -5px">m=f'(a).</math>
 
 
|}
 
|}
  
Line 27: Line 23:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Let <math style="vertical-align: -5px">f(x)=\sqrt{3x-5}.</math>
+
|Let &nbsp;<math style="vertical-align: -5px">f(x)=\sqrt{3x-5}.</math>
 
|-
 
|-
 
|Using the limit definition of the derivative, we have
 
|Using the limit definition of the derivative, we have
Line 67: Line 63:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We start by finding the slope of the tangent line to <math style="vertical-align: -5px">f(x)=\sqrt{3x-5}</math> at <math style="vertical-align: -5px">(2,1).</math>
+
|We start by finding the slope of the tangent line to &nbsp;<math style="vertical-align: -5px">f(x)=\sqrt{3x-5}</math>&nbsp; at &nbsp;<math style="vertical-align: -5px">(2,1).</math>
 
|-
 
|-
 
|Using the derivative calculated in part (a), the slope is  
 
|Using the derivative calculated in part (a), the slope is  
Line 83: Line 79:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, the tangent line to <math style="vertical-align: -5px">f(x)=\sqrt{3x-5}</math> at <math style="vertical-align: -5px">(2,1)</math>
+
|Now, the tangent line to &nbsp;<math style="vertical-align: -5px">f(x)=\sqrt{3x-5}</math>&nbsp; at &nbsp;<math style="vertical-align: -5px">(2,1)</math>
 
|-
 
|-
|has slope <math style="vertical-align: -13px">m=\frac{3}{2}</math> and passes through the point <math style="vertical-align: -5px">(2,1).</math>
+
|has slope &nbsp;<math style="vertical-align: -13px">m=\frac{3}{2}</math>&nbsp; and passes through the point &nbsp;<math style="vertical-align: -5px">(2,1).</math>
 
|-
 
|-
 
|Hence, the equation of this line is
 
|Hence, the equation of this line is

Revision as of 16:50, 26 February 2017

Let  

(a) Use the definition of the derivative to compute     for  

(b) Find the equation of the tangent line to    at  


Foundations:  
1.  
2. The equation of the tangent line to    at the point    is
          where  


Solution:

(a)

Step 1:  
Let  
Using the limit definition of the derivative, we have

       

Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
We start by finding the slope of the tangent line to    at  
Using the derivative calculated in part (a), the slope is
       
Step 2:  
Now, the tangent line to    at  
has slope    and passes through the point  
Hence, the equation of this line is
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam