Difference between revisions of "009A Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
| '''1.''' If <math style="vertical-align: -12px">\lim_{x\rightarrow a} g(x)\neq 0,</math> we have
+
| '''1.''' If &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow a} g(x)\neq 0,</math>&nbsp; we have
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow a} \frac{f(x)}{g(x)}=\frac{\displaystyle{\lim_{x\rightarrow a} f(x)}}{\displaystyle{\lim_{x\rightarrow a} g(x)}}.</math>
 
|-
 
|-
| '''2.''' <math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
+
| '''2.''' &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin x}{x}=1</math>
 
|}
 
|}
  
Line 25: Line 25:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Since <math style="vertical-align: -12px">\lim_{x\rightarrow 2} x =2\ne 0,</math>
+
|Since &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 2} x =2\ne 0,</math>
 
|-
 
|-
 
|we have
 
|we have
Line 41: Line 41:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|If we multiply both sides of the last equation by <math>2,</math> we get
+
|If we multiply both sides of the last equation by &nbsp;<math>2,</math>&nbsp; we get
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>10=\lim_{x\rightarrow 2} (4-g(x)).</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>10=\lim_{x\rightarrow 2} (4-g(x)).</math>
Line 57: Line 57:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Solving for <math style="vertical-align: -12px">\lim_{x\rightarrow 2} g(x)</math> in the last equation,
+
|Solving for &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 2} g(x)</math>&nbsp; in the last equation,
 
|-
 
|-
 
|we get
 
|we get
Line 92: Line 92:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|When we plug in <math style="vertical-align: 0px">-3</math> into &nbsp; <math style="vertical-align: -12px">\frac{x}{x^2-9},</math>
+
|When we plug in &nbsp;<math style="vertical-align: 0px">-3</math>&nbsp; into &nbsp; <math style="vertical-align: -12px">\frac{x}{x^2-9},</math>
 
|-
 
|-
 
|we get &nbsp; <math style="vertical-align: -12px">\frac{-3}{0}.</math>  
 
|we get &nbsp; <math style="vertical-align: -12px">\frac{-3}{0}.</math>  
Line 100: Line 100:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}</math>  
 
|-
 
|-
|is either equal to <math style="vertical-align: -1px">+\infty</math> or <math style="vertical-align: -1px">-\infty.</math>
+
|is either equal to &nbsp;<math style="vertical-align: -1px">+\infty</math>&nbsp; or &nbsp;<math style="vertical-align: -1px">-\infty.</math>
 
|}
 
|}
  
Line 110: Line 110:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}=\lim_{x\rightarrow -3^+} \frac{x}{(x-3)(x+3)}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{x\rightarrow -3^+} \frac{x}{x^2-9}=\lim_{x\rightarrow -3^+} \frac{x}{(x-3)(x+3)}.</math>
 
|-
 
|-
|We are taking a right hand limit. So, we are looking at values of <math style="vertical-align: 0px">x</math>  
+
|We are taking a right hand limit. So, we are looking at values of &nbsp;<math style="vertical-align: 0px">x</math>  
 
|-
 
|-
|a little bigger than <math style="vertical-align: 0px">-3.</math> (You can imagine values like <math style="vertical-align: 0px">x=-2.9.</math>)
+
|a little bigger than &nbsp;<math style="vertical-align: 0px">-3.</math>&nbsp; (You can imagine values like &nbsp;<math style="vertical-align: 0px">x=-2.9.</math>&nbsp;)
 
|-
 
|-
 
|For these values, the numerator will be negative.   
 
|For these values, the numerator will be negative.   
 
|-
 
|-
|Also, for these values, <math style="vertical-align: 0px">x-3</math> will be negative and <math style="vertical-align: -1px">x+3</math> will be positive.  
+
|Also, for these values, &nbsp;<math style="vertical-align: 0px">x-3</math>&nbsp; will be negative and &nbsp;<math style="vertical-align: -1px">x+3</math>&nbsp; will be positive.  
 
|-
 
|-
 
|Therefore, the denominator will be negative.  
 
|Therefore, the denominator will be negative.  

Revision as of 16:43, 26 February 2017

Find the following limits:

(a) Find    provided that  

(b) Find  

(c) Evaluate  


Foundations:  
1. If    we have
       
2.  


Solution:

(a)

Step 1:  
Since  
we have
       
Step 2:  
If we multiply both sides of the last equation by    we get
       
Now, using linearity properties of limits, we have
       
Step 3:  
Solving for    in the last equation,
we get

       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have
       

(c)

Step 1:  
When we plug in    into  
we get  
Thus,
       
is either equal to    or  
Step 2:  
To figure out which one, we factor the denominator to get
       
We are taking a right hand limit. So, we are looking at values of  
a little bigger than    (You can imagine values like   )
For these values, the numerator will be negative.
Also, for these values,    will be negative and    will be positive.
Therefore, the denominator will be negative.
Since both the numerator and denominator will be negative (have the same sign),
       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam