Difference between revisions of "009C Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 38: Line 38:
 
& \overset{L'H}{=} & \displaystyle{\frac{-4}{10}}\\
 
& \overset{L'H}{=} & \displaystyle{\frac{-4}{10}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{-2}{5}}.
+
& = & \displaystyle{-\frac{2}{5}}.
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 48: Line 48:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}=\frac{-2}{5}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}=-\frac{2}{5}.</math>
 
|}
 
|}
  
Line 62: Line 62:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
\displaystyle{\lim_{x \rightarrow \infty}\frac{\ln x}{\ln(3x)}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{\frac{1}{x}}{\frac{3}{3x}}}\\
+
\displaystyle{\lim_{x \rightarrow \infty}\frac{\ln x}{\ln(3x)}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{\big(\frac{1}{x}\big)}{\big(\frac{3}{3x}\big)}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\lim_{x \rightarrow \infty} 1}\\
 
& = & \displaystyle{\lim_{x \rightarrow \infty} 1}\\
Line 83: Line 83:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: -14px">\frac{-2}{5}</math>
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: -14px">-\frac{2}{5}</math>
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -3px">1</math>  
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -3px">1</math>  
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:48, 18 March 2017

Compute

(a)  

(b)  

Foundations:  
L'Hopital's Rule

        Suppose that   and   are both zero or both  

       If   is finite or  

       then


Solution:

(a)

Step 1:  
First, we switch to the limit to so that we can use L'Hopital's rule.
So, we have

       

Step 2:  
Hence, we have

       

(b)

Step 1:  
Again, we switch to the limit to so that we can use L'Hopital's rule.
So, we have

       

Step 2:  
Hence, we have

       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam