Difference between revisions of "009C Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> and <math>\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> &nbsp; and <math>\lim_{x\rightarrow \infty} g(x)</math> &nbsp; are both zero or both &nbsp; <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -1px">\pm \infty ,</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> &nbsp; is finite or &nbsp; <math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|-
 
|
 
|

Revision as of 15:54, 26 February 2017

Compute

(a)  

(b)  

Foundations:  
L'Hopital's Rule

        Suppose that   and   are both zero or both  

       If   is finite or  

       then


Solution:

(a)

Step 1:  
First, we switch to the limit to so that we can use L'Hopital's rule.
So, we have

       

Step 2:  
Hence, we have

       

(b)

Step 1:  
Again, we switch to the limit to so that we can use L'Hopital's rule.
So, we have

       

Step 2:  
Hence, we have

       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam