Difference between revisions of "009C Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|The area under a polar curve <math style="vertical-align: -5px">r=f(\theta)</math> is given by
+
|The area under a polar curve &nbsp; <math style="vertical-align: -5px">r=f(\theta)</math>&nbsp; is given by
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math> for appropriate values of <math>\alpha_1,\alpha_2.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math>&nbsp; for appropriate values of &nbsp;<math>\alpha_1,\alpha_2.</math>
 
|}
 
|}
  
Line 39: Line 39:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Using the double angle formula for <math style="vertical-align: -5px">\sin(2\theta),</math> we have
+
|Using the double angle formula for &nbsp;<math style="vertical-align: -5px">\sin(2\theta),</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
Line 72: Line 72:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See Step 1 above.
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See above.
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{3\pi}{2}</math>
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{3\pi}{2}</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:23, 26 February 2017

A curve is given in polar coordinates by

(a) Sketch the curve.

(b) Find the area enclosed by the curve.

Foundations:  
The area under a polar curve     is given by

         for appropriate values of  


Solution:

(a)  
Insert sketch

(b)

Step 1:  
Since the graph has symmetry (as seen in the graph), the area of the curve is

       

Step 2:  
Using the double angle formula for    we have

       

Step 3:  
Lastly, we evaluate to get

       


Final Answer:  
   (a)     See above.
   (b)    

Return to Sample Exam