Difference between revisions of "009C Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|The area under a polar curve <math style="vertical-align: -5px">r=f(\theta)</math> is given by
+
|The area under a polar curve &nbsp; <math style="vertical-align: -5px">r=f(\theta)</math>&nbsp; is given by
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math> for appropriate values of <math>\alpha_1,\alpha_2.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta</math>&nbsp; for appropriate values of &nbsp;<math>\alpha_1,\alpha_2.</math>
 
|}
 
|}
  
Line 39: Line 39:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Using the double angle formula for <math style="vertical-align: -5px">\sin(2\theta),</math> we have
+
|Using the double angle formula for &nbsp;<math style="vertical-align: -5px">\sin(2\theta),</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
Line 72: Line 72:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See Step 1 above.
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See above.
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{3\pi}{2}</math>
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{3\pi}{2}</math>
 
|}
 
|}
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:23, 26 February 2017

A curve is given in polar coordinates by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq \theta \leq 2\pi}

(a) Sketch the curve.

(b) Find the area enclosed by the curve.

Foundations:  
The area under a polar curve   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=f(\theta)}   is given by

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{\alpha_1}^{\alpha_2} \frac{1}{2}r^2~d\theta}   for appropriate values of  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha_1,\alpha_2.}


Solution:

(a)  
Insert sketch

(b)

Step 1:  
Since the graph has symmetry (as seen in the graph), the area of the curve is

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta)^2)~d\theta.}

Step 2:  
Using the double angle formula for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(2\theta),}   we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{2\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{1}{2}(1+\sin (2\theta))^2~d\theta} & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\sin^2(2\theta)~d\theta} \\ &&\\ & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}1+2\sin(2\theta)+\frac{1-\cos(4\theta)}{2}~d\theta}\\ &&\\ & = & \displaystyle{\int_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}\frac{3}{2}+2\sin(2\theta)-\frac{\cos(4\theta)}{2}~d\theta}\\ &&\\ & = & \displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}.}\\ \end{array}}

Step 3:  
Lastly, we evaluate to get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{3}{2}\theta-\cos(2\theta)-\frac{\sin(4\theta)}{8}\bigg|_{-\frac{\pi}{4}}^{\frac{3\pi}{4}}} & = &\displaystyle{\frac{3}{2}\bigg(\frac{3\pi}{4}\bigg)-\cos\bigg(\frac{3\pi}{2}\bigg)-\frac{\sin(3\pi)}{8}-\bigg[\frac{3}{2}\bigg(-\frac{\pi}{4}\bigg)-\cos\bigg(-\frac{\pi}{2}\bigg)-\frac{\sin(-\pi)}{8}\bigg]}\\ &&\\ & = & \displaystyle{\frac{9\pi}{8}+\frac{3\pi}{8}}\\ &&\\ & = & \displaystyle{\frac{3\pi}{2}.}\\ \end{array}}


Final Answer:  
   (a)     See above.
   (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{3\pi}{2}}

Return to Sample Exam