Difference between revisions of "009C Sample Midterm 2, Problem 3"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Kayla Murray (talk | contribs) | Kayla Murray (talk | contribs)  | ||
| Line 1: | Line 1: | ||
| <span class="exam">Determine convergence or divergence: | <span class="exam">Determine convergence or divergence: | ||
| − | <span class="exam">(a) <math>\sum_{n=1}^\infty (-1)^n \sqrt{\frac{1}{n}}</math> | + | <span class="exam">(a)  <math>\sum_{n=1}^\infty (-1)^n \sqrt{\frac{1}{n}}</math> | 
| − | <span class="exam">(b) <math>\sum_{n=1}^\infty (-2)^n \frac{n!}{n^n} </math> | + | <span class="exam">(b)  <math>\sum_{n=1}^\infty (-2)^n \frac{n!}{n^n} </math> | 
| Line 11: | Line 11: | ||
| |'''1.''' '''Alternating Series Test''' | |'''1.''' '''Alternating Series Test''' | ||
| |- | |- | ||
| − | |        Let <math>\{a_n\}</math> be a positive, decreasing sequence where <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math> | + | |        Let  <math>\{a_n\}</math>  be a positive, decreasing sequence where  <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math> | 
| |- | |- | ||
| − | |        Then, <math>\sum_{n=1}^\infty (-1)^na_n</math> and <math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math>   | + | |        Then,  <math>\sum_{n=1}^\infty (-1)^na_n</math>  and  <math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math>   | 
| |- | |- | ||
| |        converge. | |        converge. | ||
| Line 19: | Line 19: | ||
| |'''2.''' '''Ratio Test'''   | |'''2.''' '''Ratio Test'''   | ||
| |- | |- | ||
| − | |        Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>   | + | |        Let  <math style="vertical-align: -7px">\sum a_n</math>  be a series and  <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>   | 
| |- | |- | ||
| |        Then, | |        Then, | ||
| |- | |- | ||
| | | | | ||
| − |         If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent.   | + |         If  <math style="vertical-align: -4px">L<1,</math>  the series is absolutely convergent.   | 
| |- | |- | ||
| | | | | ||
| − |         If <math style="vertical-align: -4px">L>1,</math> the series is divergent. | + |         If  <math style="vertical-align: -4px">L>1,</math>  the series is divergent. | 
| |- | |- | ||
| | | | | ||
| − |         If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. | + |         If  <math style="vertical-align: -4px">L=1,</math>  the test is inconclusive. | 
| |- | |- | ||
| |'''3.''' If a series absolutely converges, then it also converges.   | |'''3.''' If a series absolutely converges, then it also converges.   | ||
| Line 54: | Line 54: | ||
| |We notice that the series is alternating. | |We notice that the series is alternating. | ||
| |- | |- | ||
| − | |Let <math> b_n=\frac{1}{\sqrt{n}}.</math> | + | |Let  <math> b_n=\frac{1}{\sqrt{n}}.</math> | 
| |- | |- | ||
| − | |The sequence <math>\{b_n\}</math> is decreasing since | + | |The sequence  <math>\{b_n\}</math>  is decreasing since | 
| |- | |- | ||
| |        <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math> | |        <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math> | ||
| |- | |- | ||
| − | |for all <math style="vertical-align: -3px">n\ge 1.</math> | + | |for all  <math style="vertical-align: -3px">n\ge 1.</math> | 
| |- | |- | ||
| |Also,   | |Also,   | ||
| Line 66: | Line 66: | ||
| |        <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{\sqrt{n}}=0.</math>   | |        <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{\sqrt{n}}=0.</math>   | ||
| |- | |- | ||
| − | |Therefore, the series <math>\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}</math> converges by the Alternating Series Test. | + | |Therefore, the series  <math>\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}</math>  converges by the Alternating Series Test. | 
| |} | |} | ||
| Line 92: | Line 92: | ||
| !Step 2:   | !Step 2:   | ||
| |- | |- | ||
| − | |Now, we need to calculate <math style="vertical-align: -15px">\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math> | + | |Now, we need to calculate  <math style="vertical-align: -15px">\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math> | 
| |- | |- | ||
| − | |Let <math style="vertical-align: -15px">y=\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math> | + | |Let  <math style="vertical-align: -15px">y=\lim_{n\rightarrow \infty} \bigg(\frac{n}{n+1}\bigg)^n.</math> | 
| |- | |- | ||
| |Then, taking the natural log of both sides, we get | |Then, taking the natural log of both sides, we get | ||
| Line 111: | Line 111: | ||
| |since we can interchange limits and continuous functions. | |since we can interchange limits and continuous functions. | ||
| |- | |- | ||
| − | |Now, this limit has the form <math style="vertical-align: -13px">\frac{0}{0}.</math> | + | |Now, this limit has the form  <math style="vertical-align: -13px">\frac{0}{0}.</math> | 
| |- | |- | ||
| |Hence, we can use L'Hopital's Rule to calculate this limit. | |Hence, we can use L'Hopital's Rule to calculate this limit. | ||
| Line 138: | Line 138: | ||
| !Step 4:   | !Step 4:   | ||
| |- | |- | ||
| − | |Since <math>\ln y=-1,</math> we know | + | |Since  <math>\ln y=-1,</math>  we know | 
| |- | |- | ||
| |        <math>y=e^{-1}.</math> | |        <math>y=e^{-1}.</math> | ||
| Line 146: | Line 146: | ||
| |        <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=2e^{-1}=\frac{2}{e}.</math> | |        <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=2e^{-1}=\frac{2}{e}.</math> | ||
| |- | |- | ||
| − | |Since <math style="vertical-align: -13px">\frac{2}{e}<1,</math> the series is absolutely convergent by the Ratio Test. | + | |Since  <math style="vertical-align: -13px">\frac{2}{e}<1,</math>  the series is absolutely convergent by the Ratio Test. | 
| |- | |- | ||
| |Therefore, the series converges. | |Therefore, the series converges. | ||
Revision as of 19:08, 26 February 2017
Determine convergence or divergence:
(a)
(b)
| Foundations: | 
|---|
| 1. Alternating Series Test | 
| Let be a positive, decreasing sequence where | 
| Then, and | 
| converge. | 
| 2. Ratio Test | 
| Let be a series and | 
| Then, | 
| If the series is absolutely convergent. | 
| If the series is divergent. | 
| If the test is inconclusive. | 
| 3. If a series absolutely converges, then it also converges. | 
Solution:
(a)
| Step 1: | 
|---|
| First, we have | 
| Step 2: | 
|---|
| We notice that the series is alternating. | 
| Let | 
| The sequence is decreasing since | 
| for all | 
| Also, | 
| Therefore, the series converges by the Alternating Series Test. | 
(b)
| Step 1: | 
|---|
| We begin by using the Ratio Test. | 
| We have | 
| 
 | 
| Step 2: | 
|---|
| Now, we need to calculate | 
| Let | 
| Then, taking the natural log of both sides, we get | 
| 
 | 
| since we can interchange limits and continuous functions. | 
| Now, this limit has the form | 
| Hence, we can use L'Hopital's Rule to calculate this limit. | 
| Step 3: | 
|---|
| Now, we have | 
| 
 | 
| Step 4: | 
|---|
| Since we know | 
| Now, we have | 
| Since the series is absolutely convergent by the Ratio Test. | 
| Therefore, the series converges. | 
| Final Answer: | 
|---|
| (a) converges | 
| (b) converges |