Difference between revisions of "009C Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
<span class="exam">Evaluate: | <span class="exam">Evaluate: | ||
| − | <span class="exam">(a) <math>\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}</math> | + | <span class="exam">(a) <math>\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}</math> |
| − | <span class="exam">(b) <math>\sum_{n=1}^\infty \frac{1}{2} \bigg(\frac{1}{4}\bigg)^{n-1} </math> | + | <span class="exam">(b) <math>\sum_{n=1}^\infty \frac{1}{2} \bigg(\frac{1}{4}\bigg)^{n-1} </math> |
| Line 12: | Line 12: | ||
|- | |- | ||
| | | | ||
| − | Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>& | + | Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math> and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math> are both zero or both <math style="vertical-align: -1px">\pm \infty .</math> |
|- | |- | ||
| | | | ||
| − | If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>& | + | If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> is finite or <math style="vertical-align: -4px">\pm \infty ,</math> |
|- | |- | ||
| | | | ||
| − | then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> | + | then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> |
|- | |- | ||
|'''2.''' The sum of a convergent geometric series is <math>\frac{a}{1-r}</math> | |'''2.''' The sum of a convergent geometric series is <math>\frac{a}{1-r}</math> | ||
|- | |- | ||
| − | | where <math style="vertical-align: 0px">r</math> is the ratio of the geometric series | + | | where <math style="vertical-align: 0px">r</math> is the ratio of the geometric series |
|- | |- | ||
| − | | and <math style="vertical-align: 0px">a</math> is the first term of the series. | + | | and <math style="vertical-align: 0px">a</math> is the first term of the series. |
|} | |} | ||
| Line 62: | Line 62: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
| − | |Now, this limit has the form <math style="vertical-align: -13px">\frac{0}{0}.</math> | + | |Now, this limit has the form <math style="vertical-align: -13px">\frac{0}{0}.</math> |
|- | |- | ||
|Hence, we can use L'Hopital's Rule to calculate this limit. | |Hence, we can use L'Hopital's Rule to calculate this limit. | ||
| Line 89: | Line 89: | ||
!Step 4: | !Step 4: | ||
|- | |- | ||
| − | |Since <math>\ln y= -4,</math> we know | + | |Since <math>\ln y= -4,</math> we know |
|- | |- | ||
| <math>y=e^{-4}.</math> | | <math>y=e^{-4}.</math> | ||
| Line 109: | Line 109: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |First, we not that this is a geometric series with <math style="vertical-align: -14px">r=\frac{1}{4}.</math> | + | |First, we not that this is a geometric series with <math style="vertical-align: -14px">r=\frac{1}{4}.</math> |
|- | |- | ||
| − | |Since <math style="vertical-align: -14px">|r|=\frac{1}{4}<1,</math> | + | |Since <math style="vertical-align: -14px">|r|=\frac{1}{4}<1,</math> |
|- | |- | ||
|this series converges. | |this series converges. | ||
| Line 121: | Line 121: | ||
|Now, we need to find the sum of this series. | |Now, we need to find the sum of this series. | ||
|- | |- | ||
| − | |The first term of the series is <math style="vertical-align: -13px">a_1=\frac{1}{2}.</math> | + | |The first term of the series is <math style="vertical-align: -13px">a_1=\frac{1}{2}.</math> |
|- | |- | ||
|Hence, the sum of the series is | |Hence, the sum of the series is | ||
Revision as of 19:02, 26 February 2017
Evaluate:
(a)
(b)
| Foundations: |
|---|
| 1. L'Hôpital's Rule |
|
Suppose that and are both zero or both |
|
If is finite or |
|
then |
| 2. The sum of a convergent geometric series is |
| where is the ratio of the geometric series |
| and is the first term of the series. |
Solution:
(a)
| Step 1: |
|---|
| Let
|
| We then take the natural log of both sides to get |
| Step 2: |
|---|
| We can interchange limits and continuous functions. |
| Therefore, we have |
|
|
| Now, this limit has the form |
| Hence, we can use L'Hopital's Rule to calculate this limit. |
| Step 3: |
|---|
| Now, we have |
|
|
| Step 4: |
|---|
| Since we know |
| Now, we have |
|
|
(b)
| Step 1: |
|---|
| First, we not that this is a geometric series with |
| Since |
| this series converges. |
| Step 2: |
|---|
| Now, we need to find the sum of this series. |
| The first term of the series is |
| Hence, the sum of the series is |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |