Difference between revisions of "009A Sample Final 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
|'''The Pythagorean Theorem'''  
 
|'''The Pythagorean Theorem'''  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; For a right triangle with side lengths <math style="vertical-align: -4px">a,b,c</math>, where <math style="vertical-align: 0px">c</math> is the length of the  
+
|&nbsp; &nbsp; &nbsp; &nbsp; For a right triangle with side lengths &nbsp;<math style="vertical-align: -4px">a,b,c</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; is the length of the  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; hypotenuse, we have <math style="vertical-align: -2px">a^2+b^2=c^2.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; hypotenuse, we have &nbsp;<math style="vertical-align: -2px">a^2+b^2=c^2.</math>
 
|}
 
|}
  
Line 22: Line 22:
 
|Insert diagram.
 
|Insert diagram.
 
|-
 
|-
|From the diagram, we have <math style="vertical-align: -3px">30^2+h^2=s^2</math> by the Pythagorean Theorem.
+
|From the diagram, we have &nbsp;<math style="vertical-align: -3px">30^2+h^2=s^2</math>&nbsp; by the Pythagorean Theorem.
 
|-
 
|-
 
|Taking derivatives, we get  
 
|Taking derivatives, we get  
Line 33: Line 33:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|If &nbsp; <math style="vertical-align: -4px">s=50,</math> then&thinsp; <math style="vertical-align: -2px">h=\sqrt{50^2-30^2}=40.</math>
+
|If &nbsp; <math style="vertical-align: -4px">s=50,</math>&nbsp; then &nbsp;<math style="vertical-align: -2px">h=\sqrt{50^2-30^2}=40.</math>
 
|-
 
|-
 
|So, we have &nbsp; <math style="vertical-align: -5px">2(40)6=2(50)s'.</math>
 
|So, we have &nbsp; <math style="vertical-align: -5px">2(40)6=2(50)s'.</math>

Revision as of 09:22, 27 February 2017

A kite 30 (meters) above the ground moves horizontally at a speed of 6 (m/s). At what rate is the length of the string increasing

when 50 (meters) of the string has been let out?

Foundations:  
The Pythagorean Theorem
        For a right triangle with side lengths    where    is the length of the

        hypotenuse, we have  


Solution:

Step 1:  
Insert diagram.
From the diagram, we have    by the Pythagorean Theorem.
Taking derivatives, we get

       

Step 2:  
If     then  
So, we have  
Solving for     we get     m/s.


Final Answer:  
         m/s

Return to Sample Exam