Difference between revisions of "009C Sample Final 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 40: Line 40:
 
|-
 
|-
 
|
 
|
::<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
 
|-
 
|-
 
|Since <math style="vertical-align: -2px">r=1+\sin\theta,</math>
 
|Since <math style="vertical-align: -2px">r=1+\sin\theta,</math>
 
|-
 
|-
 
|
 
|
::<math>\frac{dr}{d\theta}=\cos\theta.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dr}{d\theta}=\cos\theta.</math>
 
|-
 
|-
 
|Hence,  
 
|Hence,  
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}.</math>
 
|}
 
|}
  
Line 57: Line 57:
 
|-
 
|-
 
|Thus, we have  
 
|Thus, we have  
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{y'} & = & \displaystyle{\frac{2\cos\theta\sin\theta+\cos\theta}{\cos^2\theta-\sin^2\theta-\sin\theta}}\\
 
\displaystyle{y'} & = & \displaystyle{\frac{2\cos\theta\sin\theta+\cos\theta}{\cos^2\theta-\sin^2\theta-\sin\theta}}\\
 
&&\\
 
&&\\
Line 76: Line 76:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\
 
\displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\
 
&&\\
 
&&\\
Line 95: Line 95:
 
|-
 
|-
 
|
 
|
::<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}.</math>
 
|-
 
|-
 
|
 
|

Revision as of 17:09, 25 February 2017

A curve is given in polar coordinates by

(a) Sketch the curve.

(b) Compute .

(c) Compute .

Foundations:  
How do you calculate for a polar curve

       Since we have

       


Solution:

(a)

Step 1:  
Insert sketch of graph


(b)

Step 1:  
First, recall we have

       

Since

       

Hence,

       

Step 2:  
Thus, we have

       

(c)

Step 1:  
We have
So, first we need to find
We have

       

since and
Step 2:  
Now, using the resulting formula for we get

       


Final Answer:  
   (a)     See Step 1 above for the graph.
   (b)    
   (c)    

Return to Sample Exam