Difference between revisions of "009C Sample Final 1, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 40: | Line 40: | ||
|- | |- | ||
| | | | ||
− | + | <math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math> | |
|- | |- | ||
|Since <math style="vertical-align: -2px">r=1+\sin\theta,</math> | |Since <math style="vertical-align: -2px">r=1+\sin\theta,</math> | ||
|- | |- | ||
| | | | ||
− | + | <math>\frac{dr}{d\theta}=\cos\theta.</math> | |
|- | |- | ||
|Hence, | |Hence, | ||
|- | |- | ||
| | | | ||
− | + | <math style="vertical-align: -18px">y'=\frac{\cos\theta\sin\theta+(1+\sin\theta)\cos\theta}{\cos^2\theta-(1+\sin\theta)\sin\theta}.</math> | |
|} | |} | ||
Line 57: | Line 57: | ||
|- | |- | ||
|Thus, we have | |Thus, we have | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{y'} & = & \displaystyle{\frac{2\cos\theta\sin\theta+\cos\theta}{\cos^2\theta-\sin^2\theta-\sin\theta}}\\ | \displaystyle{y'} & = & \displaystyle{\frac{2\cos\theta\sin\theta+\cos\theta}{\cos^2\theta-\sin^2\theta-\sin\theta}}\\ | ||
&&\\ | &&\\ | ||
Line 76: | Line 76: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\ | \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\ | ||
&&\\ | &&\\ | ||
Line 95: | Line 95: | ||
|- | |- | ||
| | | | ||
− | + | <math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}.</math> | |
|- | |- | ||
| | | |
Revision as of 17:09, 25 February 2017
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Compute .
(c) Compute .
Foundations: |
---|
How do you calculate for a polar curve |
Since we have |
|
Solution:
(a)
Step 1: |
---|
Insert sketch of graph |
(b)
Step 1: |
---|
First, recall we have |
|
Since |
|
Hence, |
|
Step 2: |
---|
Thus, we have
|
(c)
Step 1: |
---|
We have |
So, first we need to find |
We have |
|
since and |
Step 2: |
---|
Now, using the resulting formula for we get |
|
Final Answer: |
---|
(a) See Step 1 above for the graph. |
(b) |
(c) |