Difference between revisions of "009C Sample Final 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 19: | Line 19: | ||
then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> | then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math> | ||
|} | |} | ||
| + | |||
'''Solution:''' | '''Solution:''' | ||
| Line 77: | Line 78: | ||
<math>\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1.</math> | <math>\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1.</math> | ||
|} | |} | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Revision as of 16:45, 25 February 2017
Compute
(a)
(b)
| Foundations: |
|---|
| L'Hopital's Rule |
|
Suppose that and are both zero or both |
|
If is finite or |
|
then |
Solution:
(a)
| Step 1: |
|---|
| First, we switch to the limit to so that we can use L'Hopital's rule. |
| So, we have |
|
|
| Step 2: |
|---|
| Hence, we have |
|
|
(b)
| Step 1: |
|---|
| Again, we switch to the limit to so that we can use L'Hopital's rule. |
| So, we have |
|
|
| Step 2: |
|---|
| Hence, we have |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |