Difference between revisions of "009C Sample Final 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 32: | Line 32: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{L'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\ | \displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{L'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\ | ||
&&\\ | &&\\ | ||
Line 47: | Line 47: | ||
|- | |- | ||
| | | | ||
− | + | <math>\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}=\frac{-2}{5}.</math> | |
|} | |} | ||
Line 60: | Line 60: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{x \rightarrow \infty}\frac{\ln x}{\ln(3x)}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{\frac{1}{x}}{\frac{3}{3x}}}\\ | \displaystyle{\lim_{x \rightarrow \infty}\frac{\ln x}{\ln(3x)}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{\frac{1}{x}}{\frac{3}{3x}}}\\ | ||
&&\\ | &&\\ | ||
Line 75: | Line 75: | ||
|- | |- | ||
| | | | ||
− | + | <math>\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1.</math> | |
|} | |} | ||
Line 81: | Line 81: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' <math style="vertical-align: -14px">\frac{-2}{5}</math> | + | | '''(a)''' <math style="vertical-align: -14px">\frac{-2}{5}</math> |
|- | |- | ||
− | | '''(b)''' <math style="vertical-align: -3px">1</math> | + | | '''(b)''' <math style="vertical-align: -3px">1</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 16:43, 25 February 2017
Compute
(a)
(b)
Foundations: |
---|
L'Hopital's Rule |
Suppose that and are both zero or both |
If is finite or |
then |
Solution:
(a)
Step 1: |
---|
First, we switch to the limit to so that we can use L'Hopital's rule. |
So, we have |
|
Step 2: |
---|
Hence, we have |
|
(b)
Step 1: |
---|
Again, we switch to the limit to so that we can use L'Hopital's rule. |
So, we have |
|
Step 2: |
---|
Hence, we have |
|
Final Answer: |
---|
(a) |
(b) |