Difference between revisions of "009C Sample Final 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 32: | Line 32: | ||
|- | |- | ||
| | | | ||
| − | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{L'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\ | \displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{L'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\ | ||
&&\\ | &&\\ | ||
| Line 47: | Line 47: | ||
|- | |- | ||
| | | | ||
| − | + | <math>\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}=\frac{-2}{5}.</math> | |
|} | |} | ||
| Line 60: | Line 60: | ||
|- | |- | ||
| | | | ||
| − | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{x \rightarrow \infty}\frac{\ln x}{\ln(3x)}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{\frac{1}{x}}{\frac{3}{3x}}}\\ | \displaystyle{\lim_{x \rightarrow \infty}\frac{\ln x}{\ln(3x)}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{\frac{1}{x}}{\frac{3}{3x}}}\\ | ||
&&\\ | &&\\ | ||
| Line 75: | Line 75: | ||
|- | |- | ||
| | | | ||
| − | + | <math>\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1.</math> | |
|} | |} | ||
| Line 81: | Line 81: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' <math style="vertical-align: -14px">\frac{-2}{5}</math> | + | | '''(a)''' <math style="vertical-align: -14px">\frac{-2}{5}</math> |
|- | |- | ||
| − | | '''(b)''' <math style="vertical-align: -3px">1</math> | + | | '''(b)''' <math style="vertical-align: -3px">1</math> |
|} | |} | ||
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 16:43, 25 February 2017
Compute
(a)
(b)
| Foundations: |
|---|
| L'Hopital's Rule |
|
Suppose that and are both zero or both |
|
If is finite or |
|
then |
Solution:
(a)
| Step 1: |
|---|
| First, we switch to the limit to so that we can use L'Hopital's rule. |
| So, we have |
|
|
| Step 2: |
|---|
| Hence, we have |
|
|
(b)
| Step 1: |
|---|
| Again, we switch to the limit to so that we can use L'Hopital's rule. |
| So, we have |
|
|
| Step 2: |
|---|
| Hence, we have |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |