Difference between revisions of "009A Sample Final 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|<math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}</math>
|-
 
|
 
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
  
 
'''Solution:'''
 
'''Solution:'''
 
'''(a)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|Using the limit definition of derivative, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{(3(x+h)-(x+h)^2)-(3x-x^2)}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3x+3h-(x^2+2xh+h^2)-3x+x^2}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3h-2xh-h^2}{h}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 53: Line 31:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
|}
 
 
 
'''(c)'''
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3h-2xh-h^2}{h}}\\
|
+
&&\\
|-
+
& = & \displaystyle{\lim_{h\rightarrow 0} 3-2x-h}\\
|
+
&&\\
|-
+
& = & \displaystyle{3-2x.}
|
+
\end{array}</math>
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 88: Line 46:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=3-2x</math>
|-
 
|'''(b)'''
 
|-
 
|'''(c)'''
 
 
|}
 
|}
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:37, 6 March 2017

Find the derivative of the following function using the limit definition of the derivative:

Foundations:  


Solution:

Step 1:  
Using the limit definition of derivative, we have
       
Step 2:  
Now, we have
       


Final Answer:  
       

Return to Sample Exam