Difference between revisions of "009A Sample Final 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
 
<span class="exam">Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
  
<span class="exam">(a) <math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}</math>
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow 0} \frac{\sin(5x)}{1-\sqrt{1-x}}</math>
  
<span class="exam">(b) <math style="vertical-align: -14px">\lim_{x\rightarrow 8} f(x),</math> given that <math>\lim_{x\rightarrow 8}\frac{xf(x)}{3}=-2</math>
+
<span class="exam">(b) &nbsp;<math style="vertical-align: -12px">\lim_{x\rightarrow 8} f(x),</math>&nbsp; given that &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow 8}\frac{xf(x)}{3}=-2</math>
  
<span class="exam">(c) <math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}</math>
+
<span class="exam">(c) &nbsp;<math style="vertical-align: -14px">\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}</math>
  
  

Revision as of 14:27, 6 March 2017

Find each of the following limits if it exists. If you think the limit does not exist provide a reason.

(a)  

(b)    given that  

(c)  


Foundations:  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
(a)
(b)
(c)

Return to Sample Exam