Difference between revisions of "009A Sample Final 1, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 10: | Line 10: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''1.''' '''Intermediate Value Theorem''' |
|- | |- | ||
− | | | + | | If <math style="vertical-align: -5px">f(x)</math>  is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math> and <math style="vertical-align: 0px">c</math> is any number |
|- | |- | ||
| | | | ||
− | + | between <math style="vertical-align: -5px">f(a)</math>  and <math style="vertical-align: -5px">f(b)</math>, then there is at least one number <math style="vertical-align: 0px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c.</math> | |
|- | |- | ||
− | |'''2. Mean Value Theorem | + | |'''2.''' '''Mean Value Theorem''' |
+ | |- | ||
+ | | Suppose <math style="vertical-align: -5px">f(x)</math>  is a function that satisfies the following: | ||
|- | |- | ||
| | | | ||
− | + | <math style="vertical-align: -5px">f(x)</math>  is continuous on the closed interval  <math style="vertical-align: -5px">[a,b].</math> | |
|- | |- | ||
| | | | ||
− | + | <math style="vertical-align: -5px">f(x)</math>  is differentiable on the open interval <math style="vertical-align: -5px">(a,b).</math> | |
|- | |- | ||
| | | | ||
− | + | Then, there is a number <math style="vertical-align: 0px">c</math> such that  <math style="vertical-align: 0px">a<c<b</math>  and <math style="vertical-align: -14px">f'(c)=\frac{f(b)-f(a)}{b-a}.</math> | |
|} | |} | ||
Line 37: | Line 39: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First note that& | + | |First note that <math style="vertical-align: -5px">f(0)=7.</math> |
|- | |- | ||
− | |Also,& | + | |Also, <math style="vertical-align: -5px">f(-5)=-15-2\sin(-5)+7=-8-2\sin(-5).</math> |
|- | |- | ||
− | |Since& | + | |Since <math style="vertical-align: -5px">-1\leq \sin(x) \leq 1,</math> |
|- | |- | ||
| | | | ||
− | + | <math>-2\leq -2\sin(x) \leq 2.</math> | |
|- | |- | ||
− | |Thus,& | + | |Thus, <math style="vertical-align: -5px">-10\leq f(-5) \leq -6</math> and hence <math style="vertical-align: -5px">f(-5)<0.</math> |
|} | |} | ||
Line 52: | Line 54: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Since <math style="vertical-align: -5px">f(-5)<0</math>& | + | |Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0,</math> there exists <math style="vertical-align: 0px">x</math> with <math style="vertical-align: 0px">-5<x<0</math> such that |
|- | |- | ||
− | |<math style="vertical-align: -5px">f(x)=0</math>& | + | |<math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero. |
|} | |} | ||
Line 62: | Line 64: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Suppose that <math style="vertical-align: -5px">f(x)</math> has more than one zero. So, there exist <math style="vertical-align: -4px">a,b</math> such that & | + | |Suppose that <math style="vertical-align: -5px">f(x)</math> has more than one zero. So, there exist <math style="vertical-align: -4px">a,b</math> such that <math style="vertical-align: -5px">f(a)=f(b)=0.</math> |
|- | |- | ||
− | |Then, by the Mean Value Theorem, there exists <math style="vertical-align: 0px">c</math> with & | + | |Then, by the Mean Value Theorem, there exists <math style="vertical-align: 0px">c</math> with <math style="vertical-align: 0px">a<c<b</math> such that <math style="vertical-align: -5px">f'(c)=0.</math> |
|} | |} | ||
Line 70: | Line 72: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math>& | + | |We have <math style="vertical-align: -5px">f'(x)=3-2\cos(x).</math> Since <math style="vertical-align: -5px">-1\leq \cos(x)\leq 1,</math> |
|- | |- | ||
− | |<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math>& | + | |<math style="vertical-align: -5px">-2 \leq -2\cos(x)\leq 2.</math> So, <math style="vertical-align: -5px">1\leq f'(x) \leq 5,</math> |
|- | |- | ||
− | |which contradicts <math style="vertical-align: -5px">f'(c)=0.</math> Thus, <math style="vertical-align: -5px">f(x)</math>& | + | |which contradicts <math style="vertical-align: -5px">f'(c)=0.</math> Thus, <math style="vertical-align: -5px">f(x)</math> has at most one zero. |
|} | |} | ||
Line 81: | Line 83: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' Since <math style="vertical-align: -5px">f(-5)<0</math>& | + | | '''(a)''' Since <math style="vertical-align: -5px">f(-5)<0</math> and <math style="vertical-align: -5px">f(0)>0,</math> there exists <math style="vertical-align: 0px">x</math> with <math style="vertical-align: 0px">-5<x<0</math> such that |
|- | |- | ||
− | |<math style="vertical-align: -5px">f(x)=0</math>& | + | | <math style="vertical-align: -5px">f(x)=0</math> by the Intermediate Value Theorem. Hence, <math style="vertical-align: -5px">f(x)</math> has at least one zero. |
|- | |- | ||
− | |'''(b)''' See | + | | '''(b)''' See Step 1 and Step 2 above. |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 17:48, 25 February 2017
Consider the following function:
(a) Use the Intermediate Value Theorem to show that has at least one zero.
(b) Use the Mean Value Theorem to show that has at most one zero.
Foundations: |
---|
1. Intermediate Value Theorem |
If is continuous on a closed interval and is any number |
between and , then there is at least one number in the closed interval such that |
2. Mean Value Theorem |
Suppose is a function that satisfies the following: |
is continuous on the closed interval |
is differentiable on the open interval |
Then, there is a number such that and |
Solution:
(a)
Step 1: |
---|
First note that |
Also, |
Since |
|
Thus, and hence |
Step 2: |
---|
Since and there exists with such that |
by the Intermediate Value Theorem. Hence, has at least one zero. |
(b)
Step 1: |
---|
Suppose that has more than one zero. So, there exist such that |
Then, by the Mean Value Theorem, there exists with such that |
Step 2: |
---|
We have Since |
So, |
which contradicts Thus, has at most one zero. |
Final Answer: |
---|
(a) Since and there exists with such that |
by the Intermediate Value Theorem. Hence, has at least one zero. |
(b) See Step 1 and Step 2 above. |