Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 14: | Line 14: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
− | |||
− | |||
|- | |- | ||
|'''1.''' <math style="vertical-align: -5px">f(x)</math>  is continuous at <math style="vertical-align: 0px">x=a</math>  if <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math> | |'''1.''' <math style="vertical-align: -5px">f(x)</math>  is continuous at <math style="vertical-align: 0px">x=a</math>  if <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math> | ||
Line 33: | Line 31: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^+} 4\sqrt{x+1}}\\ | \displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^+} 4\sqrt{x+1}}\\ | ||
&&\\ | &&\\ | ||
Line 48: | Line 46: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^-} x+5}\\ | \displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^-} x+5}\\ | ||
&&\\ | &&\\ | ||
Line 63: | Line 61: | ||
|- | |- | ||
| | | | ||
− | + | <math>f(3)=4\sqrt{3+1}\,=\,8.</math> | |
|- | |- | ||
|Since <math style="vertical-align: -15px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>  is continuous. | |Since <math style="vertical-align: -15px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>  is continuous. | ||
Line 76: | Line 74: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{(3+h)+5-8}{h}}\\ | \displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{(3+h)+5-8}{h}}\\ | ||
&&\\ | &&\\ | ||
Line 93: | Line 91: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4\sqrt{3+h+1}-8}{h}}\\ | \displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4\sqrt{3+h+1}-8}{h}}\\ | ||
&&\\ | &&\\ | ||
Line 124: | Line 122: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>  is continuous. | + | | '''(a)''' Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>  is continuous. |
|- | |- | ||
− | |'''(b)''' Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math> | + | | '''(b)''' Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math> |
|- | |- | ||
| | | | ||
− | + | <math style="vertical-align: -5px">f(x)</math>  is differentiable at <math style="vertical-align: 0px">x=3.</math> | |
|} | |} | ||
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 17:26, 25 February 2017
Consider the following piecewise defined function:
(a) Show that is continuous at .
(b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .
Foundations: |
---|
1. is continuous at if |
2. The definition of derivative for is |
Solution:
(a)
Step 1: |
---|
We first calculate We have |
|
Step 2: |
---|
Now, we calculate We have |
|
Step 3: |
---|
Now, we calculate We have |
|
Since is continuous. |
(b)
Step 1: |
---|
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have |
|
Step 2: |
---|
Now, we have |
|
Step 3: |
---|
Since |
is differentiable at |
Final Answer: |
---|
(a) Since is continuous. |
(b) Since |
is differentiable at |