Difference between revisions of "009A Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
|-
 
|Recall:
 
 
|-
 
|-
 
|'''1.''' <math style="vertical-align: -5px">f(x)</math>&thinsp; is continuous at <math style="vertical-align: 0px">x=a</math>&thinsp; if <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math>
 
|'''1.''' <math style="vertical-align: -5px">f(x)</math>&thinsp; is continuous at <math style="vertical-align: 0px">x=a</math>&thinsp; if <math style="vertical-align: -14px">\lim_{x\rightarrow a^+}f(x)=\lim_{x\rightarrow a^-}f(x)=f(a).</math>
Line 33: Line 31:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^+} 4\sqrt{x+1}}\\
 
\displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^+} 4\sqrt{x+1}}\\
 
&&\\
 
&&\\
Line 48: Line 46:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^-} x+5}\\
 
\displaystyle{\lim_{x\rightarrow 3^-}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^-} x+5}\\
 
&&\\
 
&&\\
Line 63: Line 61:
 
|-
 
|-
 
|
 
|
::<math>f(3)=4\sqrt{3+1}\,=\,8.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>f(3)=4\sqrt{3+1}\,=\,8.</math>
 
|-
 
|-
 
|Since <math style="vertical-align: -15px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>&thinsp; is continuous.
 
|Since <math style="vertical-align: -15px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>&thinsp; is continuous.
Line 76: Line 74:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{(3+h)+5-8}{h}}\\
 
\displaystyle{\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^-}\frac{(3+h)+5-8}{h}}\\
 
&&\\
 
&&\\
Line 93: Line 91:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4\sqrt{3+h+1}-8}{h}}\\
 
\displaystyle{\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h}} & = & \displaystyle{\lim_{h\rightarrow 0^+}\frac{4\sqrt{3+h+1}-8}{h}}\\
 
&&\\
 
&&\\
Line 124: Line 122:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>&thinsp; is continuous.
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; Since <math style="vertical-align: -14px">\lim_{x\rightarrow 3^+}f(x)=\lim_{x\rightarrow 3^-}f(x)=f(3),~f(x)</math>&thinsp; is continuous.
 
|-
 
|-
|'''(b)''' Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math>  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; Since <math style="vertical-align: -14px">\lim_{h\rightarrow 0^-}\frac{f(3+h)-f(3)}{h}=\lim_{h\rightarrow 0^+}\frac{f(3+h)-f(3)}{h},</math>  
 
|-
 
|-
 
|
 
|
::<math style="vertical-align: -5px">f(x)</math>&thinsp; is differentiable at <math style="vertical-align: 0px">x=3.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)</math>&thinsp; is differentiable at <math style="vertical-align: 0px">x=3.</math>
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:26, 25 February 2017

Consider the following piecewise defined function:

(a) Show that is continuous at .

(b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .

Foundations:  
1.   is continuous at   if
2. The definition of derivative for   is  


Solution:

(a)

Step 1:  
We first calculate We have

       

Step 2:  
Now, we calculate We have

       

Step 3:  
Now, we calculate We have

       

Since   is continuous.

(b)

Step 1:  
We need to use the limit definition of derivative and calculate the limit from both sides. So, we have

       

Step 2:  
Now, we have

       

Step 3:  
Since
  is differentiable at


Final Answer:  
    (a)     Since   is continuous.
    (b)     Since

         is differentiable at

Return to Sample Exam