Difference between revisions of "009A Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
|-
 
|Recall:
 
 
|-
 
|-
 
|'''L'Hôpital's Rule'''  
 
|'''L'Hôpital's Rule'''  
 
|-
 
|-
|Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&thinsp; and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&thinsp; are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Suppose that <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&thinsp; and <math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&thinsp; are both zero or both <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|-
 
|
 
|
::If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&thinsp; is finite or&thinsp; <math style="vertical-align: -4px">\pm \infty ,</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&thinsp; is finite or&thinsp; <math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|-
 
|
 
|
::then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; then <math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
|}
  
Line 34: Line 32:
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)(x+3)}{2(x+3)}.</math>
 
|-
 
|-
 
|So, we can cancel <math style="vertical-align: -2px">x+3</math>&thinsp; in the numerator and denominator. Thus, we have
 
|So, we can cancel <math style="vertical-align: -2px">x+3</math>&thinsp; in the numerator and denominator. Thus, we have
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)}{2}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\lim_{x\rightarrow -3}\frac{x(x-3)}{2}.</math>
 
|}
 
|}
  
Line 48: Line 46:
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\frac{(-3)(-3-3)}{2}\,=\,\frac{18}{2}\,=\,9.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -3} \frac{x^3-9x}{6+2x}\,=\,\frac{(-3)(-3-3)}{2}\,=\,\frac{18}{2}\,=\,9.</math>
 
|}
 
|}
  
Line 59: Line 57:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\
 
\displaystyle{\lim_{x\rightarrow 0^+} \frac{\sin (2x)}{x^2}} & = & \displaystyle{\lim_{x\rightarrow 0^+}\frac{2\cos(2x)}{2x}}\\
 
&&\\
 
&&\\
Line 69: Line 67:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|This limit is&thinsp; <math>+\infty.</math>
+
|This limit is &nbsp; <math>+\infty.</math>
 
|}
 
|}
  
Line 80: Line 78:
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{x^2(4+\frac{1}{x}+\frac{5}{x^2}})}.</math>
 
|-
 
|-
 
|Since we are looking at the limit as <math style="vertical-align: 0px">x</math> goes to negative infinity, we have <math style="vertical-align: -2px">\sqrt{x^2}=-x.</math>
 
|Since we are looking at the limit as <math style="vertical-align: 0px">x</math> goes to negative infinity, we have <math style="vertical-align: -2px">\sqrt{x^2}=-x.</math>
Line 87: Line 85:
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{3x}{-x\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math>
 
|}
 
|}
  
Line 96: Line 94:
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}\,=\,\lim_{x\rightarrow -\infty} \frac{-3}{\sqrt{4+\frac{1}{x}+\frac{5}{x^2}}}.</math>
 
|-
 
|-
 
|So, we have
 
|So, we have
 
|-
 
|-
 
|
 
|
::<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -\infty} \frac{3x}{\sqrt{4x^2+x+5}}=\frac{-3}{\sqrt{4}}=\frac{-3}{2}.</math>
 
|}
 
|}
  
Line 108: Line 106:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''&thinsp; <math style="vertical-align: 0px">9</math>
+
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; <math style="vertical-align: 0px">9</math>
 
|-
 
|-
|'''(b)'''&thinsp; <math style="vertical-align: 0px">+\infty</math>
+
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp; <math style="vertical-align: 0px">+\infty</math>
 
|-
 
|-
|'''(c)'''&thinsp; <math style="vertical-align: -15px">-\frac{3}{2}</math>
+
|&nbsp; &nbsp; '''(c)'''&nbsp; &nbsp; <math style="vertical-align: -15px">-\frac{3}{2}</math>
 
|}
 
|}
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:25, 25 February 2017

In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.

(a)

(b)

(c)

Foundations:  
L'Hôpital's Rule
        Suppose that   and   are both zero or both

        If   is finite or 

        then


Solution:

(a)

Step 1:  
We begin by factoring the numerator. We have

       

So, we can cancel   in the numerator and denominator. Thus, we have

       

Step 2:  
Now, we can just plug in   to get

       

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
This limit is  

(c)

Step 1:  
We have

       

Since we are looking at the limit as goes to negative infinity, we have
So, we have

       

Step 2:  
We simplify to get

       

So, we have

       


Final Answer:  
    (a)   
    (b)   
    (c)   

Return to Sample Exam