Difference between revisions of "009A Sample Final 1, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
::Since &thinsp;<math style="vertical-align: -4px">x=1,</math>&thinsp; the differential is &thinsp;<math style="vertical-align: -4px">dy=2xdx=2dx.</math>
 
::Since &thinsp;<math style="vertical-align: -4px">x=1,</math>&thinsp; the differential is &thinsp;<math style="vertical-align: -4px">dy=2xdx=2dx.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
 
  
 
'''(a)'''
 
'''(a)'''
Line 70: Line 70:
 
::<math>1.9^3\,\approx \, 2^3+-1.2\,=\,6.8.</math>
 
::<math>1.9^3\,\approx \, 2^3+-1.2\,=\,6.8.</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 18:49, 18 February 2017

Let

(a) Find the differential of at .

(b) Use differentials to find an approximate value for .

Foundations:  
What is the differential of at
Since    the differential is  


Solution:

(a)

Step 1:  
First, we find the differential
Since   we have
Step 2:  
Now, we plug   into the differential from Step 1.
So, we get

(b)

Step 1:  
First, we find . We have  
Then, we plug this into the differential from part (a).
So, we have
Step 2:  
Now, we add the value for to    to get an
approximate value of
Hence, we have


Final Answer:  
(a)
(b)

Return to Sample Exam