Difference between revisions of "009A Sample Final 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 21: | Line 21: | ||
|'''2.''' The definition of derivative for <math style="vertical-align: -5px">f(x)</math>  is  <math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}.</math> | |'''2.''' The definition of derivative for <math style="vertical-align: -5px">f(x)</math>  is  <math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}.</math> | ||
|} | |} | ||
| + | |||
'''Solution:''' | '''Solution:''' | ||
| Line 118: | Line 119: | ||
|<math style="vertical-align: -5px">f(x)</math>  is differentiable at <math style="vertical-align: 0px">x=3.</math> | |<math style="vertical-align: -5px">f(x)</math>  is differentiable at <math style="vertical-align: 0px">x=3.</math> | ||
|} | |} | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Revision as of 18:46, 18 February 2017
Consider the following piecewise defined function:
(a) Show that is continuous at .
(b) Using the limit definition of the derivative, and computing the limits from both sides, show that is differentiable at .
| Foundations: |
|---|
| Recall: |
| 1. is continuous at if |
| 2. The definition of derivative for is |
Solution:
(a)
| Step 1: |
|---|
| We first calculate We have |
|
|
| Step 2: |
|---|
| Now, we calculate We have |
|
|
| Step 3: |
|---|
| Now, we calculate We have |
|
|
| Since is continuous. |
(b)
| Step 1: |
|---|
| We need to use the limit definition of derivative and calculate the limit from both sides. So, we have |
|
|
| Step 2: |
|---|
| Now, we have |
|
|
| Step 3: |
|---|
| Since |
| is differentiable at |
| Final Answer: |
|---|
| (a) Since is continuous. |
| (b) Since |
|