Difference between revisions of "009C Sample Midterm 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam"> Find the radius of convergence and interval of convergence of the series. | <span class="exam"> Find the radius of convergence and interval of convergence of the series. | ||
− | <span class="exam">(a) <math>\sum_{n=0}^\infty n^nx^n</math> | + | <span class="exam">(a) <math>\sum_{n=0}^\infty n^nx^n</math> |
− | <span class="exam">(b) <math>\sum_{n=0}^\infty \frac{(x+1)^n}{\sqrt{n}}</math> | + | <span class="exam">(b) <math>\sum_{n=0}^\infty \frac{(x+1)^n}{\sqrt{n}}</math> |
Line 11: | Line 11: | ||
|'''1.''' '''Root Test''' | |'''1.''' '''Root Test''' | ||
|- | |- | ||
− | | Let <math>\{a_n\}</math> be a positive sequence and let <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} |a_n|^{\frac{1}{n}}=L.</math> | + | | Let <math>\{a_n\}</math> be a positive sequence and let <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} |a_n|^{\frac{1}{n}}=L.</math> |
|- | |- | ||
| Then, | | Then, | ||
|- | |- | ||
− | | If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent. | + | | If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent. |
|- | |- | ||
| | | | ||
− | If <math style="vertical-align: -4px">L>1,</math> the series is divergent. | + | If <math style="vertical-align: -4px">L>1,</math> the series is divergent. |
|- | |- | ||
| | | | ||
− | If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. | + | If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. |
|- | |- | ||
|'''2.''' '''Ratio Test''' | |'''2.''' '''Ratio Test''' | ||
|- | |- | ||
− | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> | + | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> |
|- | |- | ||
| Then, | | Then, | ||
|- | |- | ||
| | | | ||
− | If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent. | + | If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent. |
|- | |- | ||
| | | | ||
− | If <math style="vertical-align: -4px">L>1,</math> the series is divergent. | + | If <math style="vertical-align: -4px">L>1,</math> the series is divergent. |
|- | |- | ||
| | | | ||
− | If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. | + | If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. |
|} | |} | ||
Line 69: | Line 69: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |This means that as long as <math style="vertical-align: -6px">x\ne 0,</math> this series diverges. | + | |This means that as long as <math style="vertical-align: -6px">x\ne 0,</math> this series diverges. |
|- | |- | ||
− | |Hence, the radius of convergence is <math style="vertical-align: -1px">R=0</math> and | + | |Hence, the radius of convergence is <math style="vertical-align: -1px">R=0</math> and |
|- | |- | ||
− | |the interval of convergence is <math style="vertical-align: -5px">\{0\}.</math> | + | |the interval of convergence is <math style="vertical-align: -5px">\{0\}.</math> |
|- | |- | ||
| | | | ||
Line 106: | Line 106: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |The Ratio Test tells us this series is absolutely convergent if <math style="vertical-align: -4px">|x+1|<1.</math> | + | |The Ratio Test tells us this series is absolutely convergent if <math style="vertical-align: -4px">|x+1|<1.</math> |
|- | |- | ||
− | |Hence, the Radius of Convergence of this series is <math style="vertical-align: -1px">R=1.</math> | + | |Hence, the Radius of Convergence of this series is <math style="vertical-align: -1px">R=1.</math> |
|} | |} | ||
Line 116: | Line 116: | ||
|Now, we need to determine the interval of convergence. | |Now, we need to determine the interval of convergence. | ||
|- | |- | ||
− | |First, note that <math style="vertical-align: -4px">|x+1|<1</math> corresponds to the interval <math style="vertical-align: -4px">(-2,0).</math> | + | |First, note that <math style="vertical-align: -4px">|x+1|<1</math> corresponds to the interval <math style="vertical-align: -4px">(-2,0).</math> |
|- | |- | ||
|To obtain the interval of convergence, we need to test the endpoints of this interval | |To obtain the interval of convergence, we need to test the endpoints of this interval | ||
|- | |- | ||
− | |for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">R=1.</math> | + | |for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">R=1.</math> |
|} | |} | ||
Line 126: | Line 126: | ||
!Step 4: | !Step 4: | ||
|- | |- | ||
− | |First, let <math style="vertical-align: -1px">x=0.</math> | + | |First, let <math style="vertical-align: -1px">x=0.</math> |
|- | |- | ||
− | |Then, the series becomes <math>\sum_{n=0}^\infty \frac{1}{\sqrt{n}}.</math> | + | |Then, the series becomes <math>\sum_{n=0}^\infty \frac{1}{\sqrt{n}}.</math> |
|- | |- | ||
− | |We note that this is a <math style="vertical-align: -3px">p</math>-series with <math style="vertical-align: -12px">p=\frac{1}{2}.</math> | + | |We note that this is a <math style="vertical-align: -3px">p</math>-series with <math style="vertical-align: -12px">p=\frac{1}{2}.</math> |
|- | |- | ||
− | |Since <math>p<1,</math> the series diverges. | + | |Since <math>p<1,</math> the series diverges. |
|- | |- | ||
− | |Hence, we do not include <math style="vertical-align: -1px">x=0</math> in the interval. | + | |Hence, we do not include <math style="vertical-align: -1px">x=0</math> in the interval. |
|} | |} | ||
Line 140: | Line 140: | ||
!Step 5: | !Step 5: | ||
|- | |- | ||
− | |Now, let <math style="vertical-align: -1px">x=-2.</math> | + | |Now, let <math style="vertical-align: -1px">x=-2.</math> |
|- | |- | ||
− | |Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math> | + | |Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math> |
|- | |- | ||
|This series is alternating. | |This series is alternating. | ||
|- | |- | ||
− | |Let <math style="vertical-align: -20px">b_n=\frac{1}{\sqrt{n}}.</math> | + | |Let <math style="vertical-align: -20px">b_n=\frac{1}{\sqrt{n}}.</math> |
|- | |- | ||
− | |The sequence <math>\{b_n\}</math> is decreasing since | + | |The sequence <math>\{b_n\}</math> is decreasing since |
|- | |- | ||
| <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math> | | <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math> | ||
|- | |- | ||
− | |for all <math style="vertical-align: -3px">n\ge 1.</math> | + | |for all <math style="vertical-align: -3px">n\ge 1.</math> |
|- | |- | ||
|Also, | |Also, | ||
Line 160: | Line 160: | ||
|Therefore, the series converges by the Alternating Series Test. | |Therefore, the series converges by the Alternating Series Test. | ||
|- | |- | ||
− | |Hence, we include <math style="vertical-align: -1px">x=-2</math> in our interval of convergence. | + | |Hence, we include <math style="vertical-align: -1px">x=-2</math> in our interval of convergence. |
|} | |} | ||
Line 166: | Line 166: | ||
!Step 6: | !Step 6: | ||
|- | |- | ||
− | |The interval of convergence is <math style="vertical-align: -4px">[-2,0).</math> | + | |The interval of convergence is <math style="vertical-align: -4px">[-2,0).</math> |
|} | |} | ||
Line 173: | Line 173: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' The radius of convergence is <math style="vertical-align: -1px">R=0</math> and the interval of convergence is <math>\{0\}.</math> | + | | '''(a)''' The radius of convergence is <math style="vertical-align: -1px">R=0</math> and the interval of convergence is <math>\{0\}.</math> |
|- | |- | ||
− | | '''(b)''' The radius of convergence is <math style="vertical-align: -1px">R=1</math> and the interval | + | | '''(b)''' The radius of convergence is <math style="vertical-align: -1px">R=1</math> and the interval of convergence is <math style="vertical-align: -4px">[-2,0).</math> |
|} | |} | ||
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 19:12, 26 February 2017
Find the radius of convergence and interval of convergence of the series.
(a)
(b)
Foundations: |
---|
1. Root Test |
Let be a positive sequence and let |
Then, |
If the series is absolutely convergent. |
If the series is divergent. |
If the test is inconclusive. |
2. Ratio Test |
Let be a series and |
Then, |
If the series is absolutely convergent. |
If the series is divergent. |
If the test is inconclusive. |
Solution:
(a)
Step 1: |
---|
We begin by applying the Root Test. |
We have |
|
Step 2: |
---|
This means that as long as this series diverges. |
Hence, the radius of convergence is and |
the interval of convergence is |
(b)
Step 1: |
---|
We first use the Ratio Test to determine the radius of convergence. |
We have |
Step 2: |
---|
The Ratio Test tells us this series is absolutely convergent if |
Hence, the Radius of Convergence of this series is |
Step 3: |
---|
Now, we need to determine the interval of convergence. |
First, note that corresponds to the interval |
To obtain the interval of convergence, we need to test the endpoints of this interval |
for convergence since the Ratio Test is inconclusive when |
Step 4: |
---|
First, let |
Then, the series becomes |
We note that this is a -series with |
Since the series diverges. |
Hence, we do not include in the interval. |
Step 5: |
---|
Now, let |
Then, the series becomes |
This series is alternating. |
Let |
The sequence is decreasing since |
for all |
Also, |
Therefore, the series converges by the Alternating Series Test. |
Hence, we include in our interval of convergence. |
Step 6: |
---|
The interval of convergence is |
Final Answer: |
---|
(a) The radius of convergence is and the interval of convergence is |
(b) The radius of convergence is and the interval of convergence is |