Difference between revisions of "009C Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Find the radius of convergence and interval of convergence of the series.
 
<span class="exam"> Find the radius of convergence and interval of convergence of the series.
  
<span class="exam">(a) <math>\sum_{n=0}^\infty n^nx^n</math>
+
<span class="exam">(a) &nbsp;<math>\sum_{n=0}^\infty n^nx^n</math>
  
<span class="exam">(b) <math>\sum_{n=0}^\infty \frac{(x+1)^n}{\sqrt{n}}</math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=0}^\infty \frac{(x+1)^n}{\sqrt{n}}</math>
  
  
Line 11: Line 11:
 
|'''1.''' '''Root Test'''
 
|'''1.''' '''Root Test'''
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math>\{a_n\}</math> be a positive sequence and let <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} |a_n|^{\frac{1}{n}}=L.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; be a positive sequence and let &nbsp;<math style="vertical-align: -12px">\lim_{n\rightarrow \infty} |a_n|^{\frac{1}{n}}=L.</math>
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent.
+
|&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L<1,</math>&nbsp; the series is absolutely convergent.
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L>1,</math> the series is divergent.
+
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive.  
+
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.  
 
|-
 
|-
 
|'''2.''' '''Ratio Test'''  
 
|'''2.''' '''Ratio Test'''  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent.  
+
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L<1,</math>&nbsp; the series is absolutely convergent.  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L>1,</math> the series is divergent.
+
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive.
+
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 
|}
 
|}
  
Line 69: Line 69:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|This means that as long as <math style="vertical-align: -6px">x\ne 0,</math> this series diverges.
+
|This means that as long as &nbsp;<math style="vertical-align: -6px">x\ne 0,</math>&nbsp; this series diverges.
 
|-
 
|-
|Hence, the radius of convergence is <math style="vertical-align: -1px">R=0</math> and  
+
|Hence, the radius of convergence is &nbsp;<math style="vertical-align: -1px">R=0</math>&nbsp; and  
 
|-
 
|-
|the interval of convergence is <math style="vertical-align: -5px">\{0\}.</math>
+
|the interval of convergence is &nbsp;<math style="vertical-align: -5px">\{0\}.</math>
 
|-
 
|-
 
|
 
|
Line 106: Line 106:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|The Ratio Test tells us this series is absolutely convergent if <math style="vertical-align: -4px">|x+1|<1.</math>
+
|The Ratio Test tells us this series is absolutely convergent if &nbsp;<math style="vertical-align: -4px">|x+1|<1.</math>
 
|-
 
|-
|Hence, the Radius of Convergence of this series is <math style="vertical-align: -1px">R=1.</math>
+
|Hence, the Radius of Convergence of this series is &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|}
 
|}
  
Line 116: Line 116:
 
|Now, we need to determine the interval of convergence.  
 
|Now, we need to determine the interval of convergence.  
 
|-
 
|-
|First, note that <math style="vertical-align: -4px">|x+1|<1</math> corresponds to the interval <math style="vertical-align: -4px">(-2,0).</math>
+
|First, note that &nbsp;<math style="vertical-align: -4px">|x+1|<1</math>&nbsp; corresponds to the interval &nbsp;<math style="vertical-align: -4px">(-2,0).</math>
 
|-
 
|-
 
|To obtain the interval of convergence, we need to test the endpoints of this interval
 
|To obtain the interval of convergence, we need to test the endpoints of this interval
 
|-
 
|-
|for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -1px">R=1.</math>
+
|for convergence since the Ratio Test is inconclusive when &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|}
 
|}
  
Line 126: Line 126:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|First, let <math style="vertical-align: -1px">x=0.</math>  
+
|First, let &nbsp;<math style="vertical-align: -1px">x=0.</math>  
 
|-
 
|-
|Then, the series becomes <math>\sum_{n=0}^\infty \frac{1}{\sqrt{n}}.</math>
+
|Then, the series becomes &nbsp;<math>\sum_{n=0}^\infty \frac{1}{\sqrt{n}}.</math>
 
|-
 
|-
|We note that this is a <math style="vertical-align: -3px">p</math>-series with <math style="vertical-align: -12px">p=\frac{1}{2}.</math>
+
|We note that this is a &nbsp;<math style="vertical-align: -3px">p</math>-series with &nbsp;<math style="vertical-align: -12px">p=\frac{1}{2}.</math>
 
|-
 
|-
|Since <math>p<1,</math> the series diverges.
+
|Since &nbsp;<math>p<1,</math>&nbsp; the series diverges.
 
|-
 
|-
|Hence, we do not include <math style="vertical-align: -1px">x=0</math> in the interval.
+
|Hence, we do not include &nbsp;<math style="vertical-align: -1px">x=0</math>&nbsp; in the interval.
 
|}
 
|}
  
Line 140: Line 140:
 
!Step 5: &nbsp;
 
!Step 5: &nbsp;
 
|-
 
|-
|Now, let <math style="vertical-align: -1px">x=-2.</math>
+
|Now, let &nbsp;<math style="vertical-align: -1px">x=-2.</math>
 
|-
 
|-
|Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math>
+
|Then, the series becomes &nbsp;<math>\sum_{n=0}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math>
 
|-
 
|-
 
|This series is alternating.  
 
|This series is alternating.  
 
|-
 
|-
|Let <math style="vertical-align: -20px">b_n=\frac{1}{\sqrt{n}}.</math>
+
|Let &nbsp;<math style="vertical-align: -20px">b_n=\frac{1}{\sqrt{n}}.</math>
 
|-
 
|-
|The sequence <math>\{b_n\}</math> is decreasing since
+
|The sequence &nbsp;<math>\{b_n\}</math>&nbsp; is decreasing since
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math>
 
|-
 
|-
|for all <math style="vertical-align: -3px">n\ge 1.</math>
+
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
 
|Also,
 
|Also,
Line 160: Line 160:
 
|Therefore, the series converges by the Alternating Series Test.
 
|Therefore, the series converges by the Alternating Series Test.
 
|-
 
|-
|Hence, we include <math style="vertical-align: -1px">x=-2</math> in our interval of convergence.
+
|Hence, we include &nbsp;<math style="vertical-align: -1px">x=-2</math>&nbsp; in our interval of convergence.
 
|}
 
|}
  
Line 166: Line 166:
 
!Step 6: &nbsp;
 
!Step 6: &nbsp;
 
|-
 
|-
|The interval of convergence is <math style="vertical-align: -4px">[-2,0).</math>
+
|The interval of convergence is &nbsp;<math style="vertical-align: -4px">[-2,0).</math>
 
|}
 
|}
  
Line 173: Line 173:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is <math style="vertical-align: -1px">R=0</math> and the interval of convergence is <math>\{0\}.</math>
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is &nbsp;<math style="vertical-align: -1px">R=0</math>&nbsp; and the interval of convergence is &nbsp;<math>\{0\}.</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; The radius of convergence is <math style="vertical-align: -1px">R=1</math> and the interval fo convergence is <math style="vertical-align: -4px">[-2,0).</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; The radius of convergence is &nbsp;<math style="vertical-align: -1px">R=1</math>&nbsp; and the interval of convergence is &nbsp;<math style="vertical-align: -4px">[-2,0).</math>
 
|}
 
|}
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 19:12, 26 February 2017

Find the radius of convergence and interval of convergence of the series.

(a)  

(b)  


Foundations:  
1. Root Test
        Let    be a positive sequence and let  
        Then,
        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.

2. Ratio Test
        Let    be a series and  
        Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.


Solution:

(a)

Step 1:  
We begin by applying the Root Test.
We have

       

Step 2:  
This means that as long as    this series diverges.
Hence, the radius of convergence is    and
the interval of convergence is  

(b)

Step 1:  
We first use the Ratio Test to determine the radius of convergence.
We have
       
Step 2:  
The Ratio Test tells us this series is absolutely convergent if  
Hence, the Radius of Convergence of this series is  
Step 3:  
Now, we need to determine the interval of convergence.
First, note that    corresponds to the interval  
To obtain the interval of convergence, we need to test the endpoints of this interval
for convergence since the Ratio Test is inconclusive when  
Step 4:  
First, let  
Then, the series becomes  
We note that this is a  -series with  
Since    the series diverges.
Hence, we do not include    in the interval.
Step 5:  
Now, let  
Then, the series becomes  
This series is alternating.
Let  
The sequence    is decreasing since
       
for all  
Also,
       
Therefore, the series converges by the Alternating Series Test.
Hence, we include    in our interval of convergence.
Step 6:  
The interval of convergence is  


Final Answer:  
    (a)     The radius of convergence is    and the interval of convergence is  
    (b)     The radius of convergence is    and the interval of convergence is  

Return to Sample Exam