Difference between revisions of "009C Sample Midterm 1, Problem 5"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Kayla Murray (talk | contribs)  | 
				Kayla Murray (talk | contribs)   | 
				||
| Line 1: | Line 1: | ||
<span class="exam"> Find the radius of convergence and interval of convergence of the series.  | <span class="exam"> Find the radius of convergence and interval of convergence of the series.  | ||
| − | <span class="exam">(a) <math>\sum_{n=0}^\infty \sqrt{n}x^n</math>  | + | <span class="exam">(a)  <math>\sum_{n=0}^\infty \sqrt{n}x^n</math>  | 
| − | <span class="exam">(b) <math>\sum_{n=0}^\infty (-1)^n \frac{(x-3)^n}{2n+1}</math>  | + | <span class="exam">(b)  <math>\sum_{n=0}^\infty (-1)^n \frac{(x-3)^n}{2n+1}</math>  | 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
| Line 10: | Line 10: | ||
|'''Ratio Test'''    | |'''Ratio Test'''    | ||
|-  | |-  | ||
| − | |        Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>    | + | |        Let  <math style="vertical-align: -7px">\sum a_n</math>  be a series and  <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>    | 
|-  | |-  | ||
|        Then,  | |        Then,  | ||
|-  | |-  | ||
|  | |  | ||
| − |         If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent.    | + |         If  <math style="vertical-align: -4px">L<1,</math>  the series is absolutely convergent.    | 
|-  | |-  | ||
|  | |  | ||
| − |         If <math style="vertical-align: -4px">L>1,</math> the series is divergent.  | + |         If  <math style="vertical-align: -4px">L>1,</math>  the series is divergent.  | 
|-  | |-  | ||
|  | |  | ||
| − |         If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive.  | + |         If  <math style="vertical-align: -4px">L=1,</math>  the test is inconclusive.  | 
|}  | |}  | ||
| Line 55: | Line 55: | ||
!Step 2:    | !Step 2:    | ||
|-  | |-  | ||
| − | |The Ratio Test tells us this series is absolutely convergent if <math style="vertical-align: -5px">|x|<1.</math>  | + | |The Ratio Test tells us this series is absolutely convergent if  <math style="vertical-align: -5px">|x|<1.</math>  | 
|-  | |-  | ||
| − | |Hence, the Radius of Convergence of this series is <math style="vertical-align: -2px">R=1.</math>  | + | |Hence, the Radius of Convergence of this series is  <math style="vertical-align: -2px">R=1.</math>  | 
|}  | |}  | ||
| Line 65: | Line 65: | ||
|Now, we need to determine the interval of convergence.    | |Now, we need to determine the interval of convergence.    | ||
|-  | |-  | ||
| − | |First, note that <math style="vertical-align: -5px">|x|<1</math> corresponds to the interval <math style="vertical-align: -4px">(-1,1).</math>  | + | |First, note that  <math style="vertical-align: -5px">|x|<1</math>  corresponds to the interval  <math style="vertical-align: -4px">(-1,1).</math>  | 
|-  | |-  | ||
|To obtain the interval of convergence, we need to test the endpoints of this interval  | |To obtain the interval of convergence, we need to test the endpoints of this interval  | ||
|-  | |-  | ||
| − | |for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -2px">L=1.</math>  | + | |for convergence since the Ratio Test is inconclusive when  <math style="vertical-align: -2px">L=1.</math>  | 
|}  | |}  | ||
| Line 75: | Line 75: | ||
!Step 4:    | !Step 4:    | ||
|-  | |-  | ||
| − | |First, let <math style="vertical-align: -1px">x=1.</math>    | + | |First, let  <math style="vertical-align: -1px">x=1.</math>    | 
|-  | |-  | ||
| − | |Then, the series becomes <math>\sum_{n=0}^\infty \sqrt{n}.</math>  | + | |Then, the series becomes  <math>\sum_{n=0}^\infty \sqrt{n}.</math>  | 
|-  | |-  | ||
|We note that  | |We note that  | ||
| Line 83: | Line 83: | ||
|        <math>\lim_{n\rightarrow \infty} \sqrt{n}=\infty.</math>  | |        <math>\lim_{n\rightarrow \infty} \sqrt{n}=\infty.</math>  | ||
|-  | |-  | ||
| − | |Therefore, the series diverges by the <math style="vertical-align: 0px">n</math>th term test.  | + | |Therefore, the series diverges by the  <math style="vertical-align: 0px">n</math>th term test.  | 
|-  | |-  | ||
| − | |Hence, we do not include <math style="vertical-align: -1px">x=1</math> in the interval.  | + | |Hence, we do not include  <math style="vertical-align: -1px">x=1</math>  in the interval.  | 
|}  | |}  | ||
| Line 91: | Line 91: | ||
!Step 5:    | !Step 5:    | ||
|-  | |-  | ||
| − | |Now, let <math style="vertical-align: -1px">x=-1.</math>  | + | |Now, let  <math style="vertical-align: -1px">x=-1.</math>  | 
|-  | |-  | ||
| − | |Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \sqrt{n}.</math>  | + | |Then, the series becomes  <math>\sum_{n=0}^\infty (-1)^n \sqrt{n}.</math>  | 
|-  | |-  | ||
| − | |Since <math>\lim_{n\rightarrow \infty} \sqrt{n}=\infty,</math>  | + | |Since  <math>\lim_{n\rightarrow \infty} \sqrt{n}=\infty,</math>  | 
|-  | |-  | ||
|we have  | |we have  | ||
| Line 101: | Line 101: | ||
|        <math>\lim_{n\rightarrow \infty} (-1)^n\sqrt{n}=\text{DNE}.</math>  | |        <math>\lim_{n\rightarrow \infty} (-1)^n\sqrt{n}=\text{DNE}.</math>  | ||
|-  | |-  | ||
| − | |Therefore, the series diverges by the <math style="vertical-align: 0px">n</math>th term test.  | + | |Therefore, the series diverges by the  <math style="vertical-align: 0px">n</math>th term test.  | 
|-  | |-  | ||
| − | |Hence, we do not include <math style="vertical-align: -1px">x=-1 </math> in the interval.  | + | |Hence, we do not include  <math style="vertical-align: -1px">x=-1 </math>  in the interval.  | 
|}  | |}  | ||
| Line 109: | Line 109: | ||
!Step 6:    | !Step 6:    | ||
|-  | |-  | ||
| − | |The interval of convergence is <math style="vertical-align: -4px">(-1,1).</math>  | + | |The interval of convergence is  <math style="vertical-align: -4px">(-1,1).</math>  | 
|}  | |}  | ||
| Line 137: | Line 137: | ||
!Step 2:    | !Step 2:    | ||
|-  | |-  | ||
| − | |The Ratio Test tells us this series is absolutely convergent if <math style="vertical-align: -5px">|x-3|<1.</math>  | + | |The Ratio Test tells us this series is absolutely convergent if  <math style="vertical-align: -5px">|x-3|<1.</math>  | 
|-  | |-  | ||
| − | |Hence, the Radius of Convergence of this series is <math style="vertical-align: -2px">R=1.</math>  | + | |Hence, the Radius of Convergence of this series is  <math style="vertical-align: -2px">R=1.</math>  | 
|}  | |}  | ||
| Line 147: | Line 147: | ||
|Now, we need to determine the interval of convergence.    | |Now, we need to determine the interval of convergence.    | ||
|-  | |-  | ||
| − | |First, note that <math style="vertical-align: -5px">|x-3|<1</math> corresponds to the interval <math style="vertical-align: -4px">(2,4).</math>  | + | |First, note that  <math style="vertical-align: -5px">|x-3|<1</math>  corresponds to the interval  <math style="vertical-align: -4px">(2,4).</math>  | 
|-  | |-  | ||
|To obtain the interval of convergence, we need to test the endpoints of this interval  | |To obtain the interval of convergence, we need to test the endpoints of this interval  | ||
|-  | |-  | ||
| − | |for convergence since the Ratio Test is inconclusive when <math style="vertical-align: -2px">R=1.</math>  | + | |for convergence since the Ratio Test is inconclusive when  <math style="vertical-align: -2px">R=1.</math>  | 
|}  | |}  | ||
| Line 157: | Line 157: | ||
!Step 4:    | !Step 4:    | ||
|-  | |-  | ||
| − | |First, let <math style="vertical-align: -1px">x=4.</math>     | + | |First, let  <math style="vertical-align: -1px">x=4.</math>     | 
|-  | |-  | ||
| − | |Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \frac{1}{2n+1}.</math>  | + | |Then, the series becomes  <math>\sum_{n=0}^\infty (-1)^n \frac{1}{2n+1}.</math>  | 
|-  | |-  | ||
|This is an alternating series.  | |This is an alternating series.  | ||
|-  | |-  | ||
| − | |Let <math style="vertical-align: -16px">b_n=\frac{1}{2n+1}.</math>.  | + | |Let  <math style="vertical-align: -16px">b_n=\frac{1}{2n+1}.</math>.  | 
|-  | |-  | ||
| − | |The sequence <math>\{b_n\}</math> is decreasing since    | + | |The sequence  <math>\{b_n\}</math>  is decreasing since    | 
|-  | |-  | ||
|        <math>\frac{1}{2(n+1)+1}<\frac{1}{2n+1}</math>  | |        <math>\frac{1}{2(n+1)+1}<\frac{1}{2n+1}</math>  | ||
|-  | |-  | ||
| − | |for all <math style="vertical-align: -3px">n\ge 1.</math>  | + | |for all  <math style="vertical-align: -3px">n\ge 1.</math>  | 
|-  | |-  | ||
|Also,    | |Also,    | ||
| Line 177: | Line 177: | ||
|Therefore, this series converges by the Alternating Series Test  | |Therefore, this series converges by the Alternating Series Test  | ||
|-  | |-  | ||
| − | |and we include <math style="vertical-align: -1px">x=4</math> in our interval.  | + | |and we include  <math style="vertical-align: -1px">x=4</math>  in our interval.  | 
|}  | |}  | ||
| Line 183: | Line 183: | ||
!Step 5:    | !Step 5:    | ||
|-  | |-  | ||
| − | |Now, let <math style="vertical-align: -1px">x=2.</math>  | + | |Now, let  <math style="vertical-align: -1px">x=2.</math>  | 
|-  | |-  | ||
| − | |Then, the series becomes <math>\sum_{n=0}^\infty \frac{1}{2n+1}.</math>  | + | |Then, the series becomes  <math>\sum_{n=0}^\infty \frac{1}{2n+1}.</math>  | 
|-  | |-  | ||
| − | |First, we note that <math>\frac{1}{2n+1}>0</math> for all <math style="vertical-align: -3px">n\ge 0.</math>  | + | |First, we note that  <math>\frac{1}{2n+1}>0</math>  for all  <math style="vertical-align: -3px">n\ge 0.</math>  | 
|-  | |-  | ||
|Thus, we can use the Limit Comparison Test.  | |Thus, we can use the Limit Comparison Test.  | ||
|-  | |-  | ||
| − | |We compare this series with the series <math>\sum_{n=1}^\infty \frac{1}{n},</math>  | + | |We compare this series with the series  <math>\sum_{n=1}^\infty \frac{1}{n},</math>  | 
|-  | |-  | ||
|which is the harmonic series and divergent.  | |which is the harmonic series and divergent.  | ||
| Line 206: | Line 206: | ||
|Since this limit is a finite number greater than zero, we have    | |Since this limit is a finite number greater than zero, we have    | ||
|-  | |-  | ||
| − | |<math>\sum_{n=0}^\infty \frac{1}{2n+1}</math> diverges by the    | + | |<math>\sum_{n=0}^\infty \frac{1}{2n+1}</math>  diverges by the    | 
|-  | |-  | ||
| − | |Limit Comparison Test. Therefore, we do not include <math style="vertical-align: -1px">x=2</math>    | + | |Limit Comparison Test. Therefore, we do not include  <math style="vertical-align: -1px">x=2</math>    | 
|-  | |-  | ||
|in our interval.    | |in our interval.    | ||
| Line 216: | Line 216: | ||
!Step 6:    | !Step 6:    | ||
|-  | |-  | ||
| − | |The interval of convergence is <math style="vertical-align: -4px">(2,4].</math>  | + | |The interval of convergence is  <math style="vertical-align: -4px">(2,4].</math>  | 
|}  | |}  | ||
| Line 223: | Line 223: | ||
!Final Answer:      | !Final Answer:      | ||
|-  | |-  | ||
| − | |    '''(a)'''     The radius of convergence is <math style="vertical-align: -2px">R=1</math> and the interval of convergence is <math style="vertical-align: -4px">(-1,1).</math>  | + | |    '''(a)'''     The radius of convergence is  <math style="vertical-align: -2px">R=1</math>  and the interval of convergence is  <math style="vertical-align: -4px">(-1,1).</math>  | 
|-  | |-  | ||
| − | |    '''(b)'''     The radius of convergence is <math style="vertical-align: -2px">R=1</math> and the interval   | + | |    '''(b)'''     The radius of convergence is  <math style="vertical-align: -2px">R=1</math>  and the interval of convergence is  <math style="vertical-align: -4px">(2,4].</math>  | 
|}  | |}  | ||
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]  | [[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]  | ||
Revision as of 17:59, 26 February 2017
Find the radius of convergence and interval of convergence of the series.
(a)
(b)
| Foundations: | 
|---|
| Ratio Test | 
| Let be a series and | 
| Then, | 
| 
 If the series is absolutely convergent.  | 
| 
 If the series is divergent.  | 
| 
 If the test is inconclusive.  | 
Solution:
(a)
| Step 1: | 
|---|
| We first use the Ratio Test to determine the radius of convergence. | 
| We have | 
| Step 2: | 
|---|
| The Ratio Test tells us this series is absolutely convergent if | 
| Hence, the Radius of Convergence of this series is | 
| Step 3: | 
|---|
| Now, we need to determine the interval of convergence. | 
| First, note that corresponds to the interval | 
| To obtain the interval of convergence, we need to test the endpoints of this interval | 
| for convergence since the Ratio Test is inconclusive when | 
| Step 4: | 
|---|
| First, let | 
| Then, the series becomes | 
| We note that | 
| Therefore, the series diverges by the th term test. | 
| Hence, we do not include in the interval. | 
| Step 5: | 
|---|
| Now, let | 
| Then, the series becomes | 
| Since | 
| we have | 
| Therefore, the series diverges by the th term test. | 
| Hence, we do not include in the interval. | 
| Step 6: | 
|---|
| The interval of convergence is | 
(b)
| Step 1: | 
|---|
| We first use the Ratio Test to determine the radius of convergence. | 
| We have | 
| 
 
  | 
| Step 2: | 
|---|
| The Ratio Test tells us this series is absolutely convergent if | 
| Hence, the Radius of Convergence of this series is | 
| Step 3: | 
|---|
| Now, we need to determine the interval of convergence. | 
| First, note that corresponds to the interval | 
| To obtain the interval of convergence, we need to test the endpoints of this interval | 
| for convergence since the Ratio Test is inconclusive when | 
| Step 4: | 
|---|
| First, let | 
| Then, the series becomes | 
| This is an alternating series. | 
| Let . | 
| The sequence is decreasing since | 
| for all | 
| Also, | 
| Therefore, this series converges by the Alternating Series Test | 
| and we include in our interval. | 
| Step 5: | 
|---|
| Now, let | 
| Then, the series becomes | 
| First, we note that for all | 
| Thus, we can use the Limit Comparison Test. | 
| We compare this series with the series | 
| which is the harmonic series and divergent. | 
| Now, we have | 
| 
 
  | 
| Since this limit is a finite number greater than zero, we have | 
| diverges by the | 
| Limit Comparison Test. Therefore, we do not include | 
| in our interval. | 
| Step 6: | 
|---|
| The interval of convergence is | 
| Final Answer: | 
|---|
| (a) The radius of convergence is and the interval of convergence is | 
| (b) The radius of convergence is and the interval of convergence is |