Difference between revisions of "009C Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|'''Direct Comparison Test'''
 
|'''Direct Comparison Test'''
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math>\{a_n\}</math> and <math>\{b_n\}</math> be positive sequences where <math style="vertical-align: -3px">a_n\le b_n</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; and &nbsp;<math>\{b_n\}</math>&nbsp; be positive sequences where &nbsp;<math style="vertical-align: -3px">a_n\le b_n</math>  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; for all <math style="vertical-align: -3px">n\ge N</math> for some <math style="vertical-align: -3px">N\ge 1.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; for all &nbsp;<math style="vertical-align: -3px">n\ge N</math>&nbsp; for some &nbsp;<math style="vertical-align: -3px">N\ge 1.</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; '''1.''' If <math>\sum_{n=1}^\infty b_n</math> converges, then <math>\sum_{n=1}^\infty a_n</math> converges.
+
|&nbsp; &nbsp; &nbsp; &nbsp; '''1.''' If &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; converges, then &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; converges.
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; '''2.''' If <math>\sum_{n=1}^\infty a_n</math> diverges, then <math>\sum_{n=1}^\infty b_n</math> diverges.
+
|&nbsp; &nbsp; &nbsp; &nbsp; '''2.''' If &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; diverges, then &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; diverges.
 
|}
 
|}
  
Line 30: Line 30:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n^23^n}>0</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n^23^n}>0</math>  
 
|-
 
|-
|for all <math style="vertical-align: -3px">n\ge 1.</math>
+
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
 
|This means that we can use a comparison test on this series.
 
|This means that we can use a comparison test on this series.
 
|-
 
|-
|Let <math style="vertical-align: -14px">a_n=\frac{1}{n^23^n}.</math>
+
|Let &nbsp;<math style="vertical-align: -14px">a_n=\frac{1}{n^23^n}.</math>
 
|}
 
|}
  
Line 40: Line 40:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Let <math style="vertical-align: -14px">b_n=\frac{1}{n^2}.</math>
+
|Let &nbsp;<math style="vertical-align: -14px">b_n=\frac{1}{n^2}.</math>
 
|-
 
|-
 
|We want to compare the series in this problem with  
 
|We want to compare the series in this problem with  
Line 46: Line 46:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty b_n=\sum_{n=1}^\infty \frac{1}{n^2}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty b_n=\sum_{n=1}^\infty \frac{1}{n^2}.</math>
 
|-
 
|-
|This is a <math style="vertical-align: -4px">p</math>-series with <math style="vertical-align: -4px">p=2.</math>
+
|This is a &nbsp;<math style="vertical-align: -4px">p</math>-series with &nbsp;<math style="vertical-align: -4px">p=2.</math>
 
|-
 
|-
|Hence, <math>\sum_{n=1}^\infty b_n</math> converges.
+
|Hence, &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; converges.
 
|}
 
|}
  
Line 54: Line 54:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Also, we have <math style="vertical-align: -4px">a_n<b_n</math> since  
+
|Also, we have &nbsp;<math style="vertical-align: -4px">a_n<b_n</math>&nbsp; since  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n^23^n}<\frac{1}{n^2}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n^23^n}<\frac{1}{n^2}</math>
 
|-
 
|-
|for all <math style="vertical-align: -3px">n\ge 1.</math>
+
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
|Therefore, the series <math>\sum_{n=1}^\infty a_n</math> converges
+
|Therefore, the series &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; converges
 
|-
 
|-
 
|by the Direct Comparison Test.
 
|by the Direct Comparison Test.

Revision as of 18:55, 26 February 2017

Determine the convergence or divergence of the following series.

Be sure to justify your answers!


Foundations:  
Direct Comparison Test
        Let    and    be positive sequences where  
        for all    for some  
        1. If    converges, then    converges.
        2. If    diverges, then    diverges.


Solution:

Step 1:  
First, we note that
       
for all  
This means that we can use a comparison test on this series.
Let  
Step 2:  
Let  
We want to compare the series in this problem with
       
This is a  -series with  
Hence,    converges.
Step 3:  
Also, we have    since
       
for all  
Therefore, the series    converges
by the Direct Comparison Test.


Final Answer:  
        converges

Return to Sample Exam